IET LABS, INC.
in the
GenRad
The World Standard in Metrology
Tradition
Manual and Programmable Standards
Part 1 Substituters and Test Instruments

CALIBRATION • TEST • MEASUREMENT • METROLOGY

R-L-C • RTD • VOLTAGE • CURRENT

Selection Guide......................................pp. 9-11
Product Descriptionpp. 12-49
Index
p. 89

Part 2

Standards and Instruments formerly manufactured by GenRad STANDARDS • DECADES • STROBES • BRIDGES•AUDIO

p. 51
1491 Decade Inductor
p. 53

1404 Standard Capacitor \qquad
p. 55
p. 57

1408 Standard Capacitor.
p. 58
p. 60

1412-BC Decade Capacitor
p. 62

1417 4-Terminal Capacitance Standard.
p. 64

1422 Precision Variable Air Capacitor
p. 66

1433 Precision Decade Resistor p. 68
1565-B Sound Level Meter p. 70
1562-A Sound Level Calibrator p. 71
1531-AB and 1538-A Strobes p. 72
1539-A Stroboscopic Light Source p. 74
1542-B Strobotac ${ }^{\circledR}$ Stroboscope p. 76
1546 Strobotac ${ }^{\circledR}$ Digital Stroboscope p. 78
1620-A Precision Cap. Meas. System p. 80
1621 High Precision Cap. Meas. System p. 85
Other GenRad Products

\qquad
Consult IET

Contents
p. 2
:---
pp. 4-8
:---
pp. 9-11
:---
pp. 12-87
:---:
products
pp. $50-87$
:---
p. 89

Contents

Part 1
-CALIBRATION•TEST. MEASUREMENT•METROLOGY-R-L-C•RTD•Voltage. CURRENT
Contents 2
Avoiding Measurement Problems 4
Calibration Tutorial 5
Glossary 8
Selection Guide 9
RS•CS•LS•Series 12
Decade Substituters
Resistance • Capacitance • Inductance
ohmSource Series 14
Electronically Controlled Resistance Box
HARS-X Series 15
High Accuracy Decade Resistance Substituter
HARS-L•HARS-LX•Series 17
Laboratory Standard DecadeResistance Substituter
HRRS Series 19
High Resistance Decade Substituter
HRRS-5kV Series 20
High Resistance 5 kV Decade Substituter
HPRS Series 22
High Power Decade ResistanceSubstituter
Part 2
Standards and Instruments formerly manufactured by GenRad 50
1482. 51
Standard InductanceReference or Working Standards
1491 53
High Accuracy Decade Inducator
1404 55
Standards Laboratory gradeCapacitance
1408. 57
Standard Capacitance with oven
1409. 58
Standard Capacitance Reference or Working Standards
1412. 60
Polystyrene Decade Capacitor
PRS • PCS • PLS • PRTD • 23
Programmable Impedance Decade Substi- tuter
SRL•SRR•Series 27
High Accuracy Standard ResistanceSRX•SRA•SRC•Series28
Standard Resistance Reference or WorkingStandards
VRS-100 Series 29
High Resistance Standards
RTD Simulator Series 30
RTD SimulatorsSC Series31
Standard Capacitance Reference orWorking Standards
SL Series 32
Standard gStandards
HATS-LR Series 33
High Accuracy Transfer Standards -Low Resistance
HATS-Y Series 34
High Accuracy Transfer Standards -High Resistance
KVD-500 • DP-500 • Series 35
Digital Potentiometer and Kelvin-VarleyVoltage Divider
KVD-600•KVD-700 • Series 36
Kelvin-Varley Voltage Divider
HACS Series 37
High Accuracy Capacitance Substituter 2 or 3 Terminal Connections 38
High Accuracy Capacitance SubstituterSC-900 Series.40
Precision Variable CapacitorVI-700 Series41
Precision Manual or ProgrammableVoltage and Current Source
HSVR Series. 42
High Stability Standard Voltage Referenceand Cell Replacement
IMF-600A Series 43
Digital Manual/Autoranging Impedance MeterLCR-50045
Autoranging Handheld High PerformanceDigital LCR Bridge
LOM-510A Series 46
High Accuracy Micro-Ohmmeter
BP-511 48
Battery Driven ac Power Source
IEEE-488 and RS-232 Tools 24
1413 62
Precision Decade Capacitor
1417 64
Four-Terminal Capacitance Standardup to 1 F1422.66
Low-loss Variable Air Capacitors
1433. 68
Precision Decade Resistors
1565-B 70
Sound-Level Meter 71
Sound-Level Calibrator1531-AB and 1538-A72
Electronic Stroboscopes
1539-A 74
Stroboscopic Light Source
1542-B. 76
Strobotac ${ }^{\circledR}$ Stroboscope
1546. 78
Strobotac ${ }^{\ominus}$ DigitalStroboscope
1620-A 80
Precision Capacitance Measurement System162185
High Precision CapacitanceMeasurement System
Warranty 88
Ordering Information. 88

Support

If you cannot find what you need, we stand ready to help find or design your solution. That is our business.

Please call or visit www.ietlabs.com

To order or for before and after sales technical assistance:

Telephone:	$(516) ~ 334-5959$ $(800) ~ 899-8438$ FAX:
Web site:	www.ietlabs.com

Technical Applications

The following are some common conditions that may cause errors in measurement and metrology and some techniques to avoid or minimize them.

Condition
Power applied to Device Under Test (DUT)

High voltage applied to DUT

Ambient temperature

Humidity

Thermal emf

Low resistance

High resistance

Ground loops

Test conditions

Self heating in resistive components causes a temperature effect and a corresponding resistance change.

Some high resistance resistors have a significant voltage coefficient of resistance.

Temperature coefficient effects; possible permanent retrace effects may result from large shipping or storage temperature shifts.

Humidity may cause leakage effects on high resistance components.

The thermal emf, i.e. the voltage generated at contacts of dissimilar metals at temperature gradients, can cause erroneous voltage and resistance measurements.

Lead resistance and thermal emf may introduce errors.

Leakage through lead insulation and benchtop, resulting from humidity, may cause errors.

Ground currents can introduce noise and offset voltage.

Most resistors, capacitors, and inductors are non-ideal; wirewound resistors are both inductive and capacitive; capacitors have losses, and inductors can be very resistive. Test conditions of voltage, frequency and model (parallel or series) may be significant to the measurement.

- Use low test signals or pulsed measurement.
- Heat sink the DUT.
- Allow for effects of power coefficient of
resistance.
- Use low power coefficient components.
- Use low voltage coefficient components.
- Measure at low voltages.
- Allow for the effects of the voltage coefficient
of resistance.
- Maintain stable temperature and minimize
exposure to temperature extremes. exposure to temperature extremes.

- Maintain relative humidity under 50\%.

- Use Cu to Cu contacts and leads wherever possible; silver contacts and solder are acceptable.
- Avoid using steel and brass.
- Minimize temperature gradients or drafts.
- Use switched or "true ohm" measurement instruments.
- Alternate leads to determine the degree of the problem.
- Use 4-wire measurement, Kelvin leads.
- See thermal emf (above).
- Use low leakage insulation such as Teflon ${ }^{\text {TM }}$
- Set DUT on high insulation subplate.
- Maintain all terminals clean.
- Shield and avoid high voltage and movement nearby.
- Use 5 or 6 terminal guard circuit.
- Use radial grounds to only one reference point.
- Apply the instrument test conditions that are the most representative model of the DUT.

See pages 7 and 8 for Selection Guide
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \text { Contents } \\
\text { p. 2 }\end{array}
$$ $$
\begin{array}{c}\text { Applic. } \\
\text { pp. 4-8 }\end{array}
$$ $$
\begin{array}{c}\text { Selection } \\
\text { pp. 9-11 }\end{array}
$$ $$
\begin{array}{c}\text { Products } \\
\text { pp. 12-87 }\end{array}
$$ \begin{array}{|cc|}GenRad

products

pp. 50-87\end{array}\right]\)| Index |
| :---: |
| p. 89 |

Technical Applications

Calibration Definitions and Terminology

Accuracy: The conformity of a measurement to an accepted standard value. Thus, 3.14159 is a more accurate statement of π than is 3.14160 . Accuracy includes traceability to Si , a recognized national or international standards organization. It also includes all other uncertainties and nonlinearities.

The accuracy of a measurement X_{i} is an interval $\left[a_{,}, a_{+}\right]$ such that the probability that the True Value of X_{i} (either nominal or specified) lies within the interval [a, a_{+}] is, for all practical purposes 100%; and the probability that it lies outside that interval is essentially zero.
True Value of a quantity is the value consistent with the definition of a given particular quantity. This is the value that would be obtained by a perfect measurement.
Calibration Accuracy or Calibration Uncertainty or Uncertainty of Measurement: The sum of the uncertainties in the calibration procedure, including the uncertainties in the references, test instruments, transfers, etc.
The uncertainty of measurement is the parameter, associated with the result of a measurement, that characterizes the dispersion that could reasonably be attributed to the measurand. This is viewed as a doubt about the validity of a measurement, i.e. a measure of the possible error in the estimated value of the measurand as provided by the result of a measurement.

Calibration accuracy must be better than the specified accuracy or initial accuracy and will either be stated or will be less than 25% of the specified accuracy of the measurement.

Initial Accuracy: Accuracy at the time of shipment.
All Accuracy references in this catalog shall operationally be understood as the Initial Accuracy.
Adjustment to Nominal: The maximum allowable difference between the actual value supplied with the standard and the nominal value, e.g. how far may a 1 H inductor be sup-
plied with a stated and calibrated value away from the nominal 1 H . This quantity is unrelated to accuracy and uncertainty statements.
Stability or Long-Term Accuracy: The measurement that will predict the worst case error for the period indicated, typically a year. To determine the worst case error after one year, the initial accuracy is added to the one year stability.
Transfer Accuracy: A comparison of two nearly equal measurements over a limited time and temperature. IET's HATS-LR and HATS-Y transfer standards may be used as described below to transfer accuracies over three decades.
See p. 6 for a tutorial on the use of transfer standards.
Short-Term Accuracy: The limit that errors will not exceed during a 24 -hour period of continuous operation. Unless specified, no zeroing or adjustments of any kind are permitted. The transfer accuracy obtained with IET's transfer standards is a short term accuracy.
Test Conditions: These comprise the assumptions and facts describing the environment, instrument and sample to be measured. These will include temperature, relative humidity, power, frequency, etc. If a standard is used in other conditions, e.g. at a different voltage or temperature or power, then the temperature coefficient or power coefficient or voltage coefficient or other variation may be used to predict the value of the quality under the nonstandard conditions.

Resolution: The digital value represented by one bit in a display in a digital measure. For example, if one bit represents $1 \mathrm{~m} \Omega$, then resolution is $1 \mathrm{~m} \Omega$.
Precision: The degree of exactness with which a measurement or quantity is stated - e.g., 3.14159 is a more precise value of π than 3.14.
Repeatability: The closeness of agreement among a number of consecutive measurements performed under the same operating conditions. Long-term and short-term repeatability are both important.

Technical Applications

Calibration Definitions Application Example:
See the IET SRL Series (p. 27), for an example of how the above definitions apply. Note the chart below.

- A 1Ω SRL standard is specified with an Adjustment Range or Adjustment to Nominal of $\pm 2 \mathrm{ppm}$., i.e. the device true value can be $1 \Omega \pm 2 \mathrm{ppm}$
- A particular unit may be supplied with a value of $1 \Omega+0.8$ ppm . This value would be given with the unit.
- This standard would be accurate to 1.0000008Ω $\pm 1 \mathrm{ppm}, 1 \mathrm{ppm}$ being the Calibration Accuracy or Calibration Uncertainty.
- For predicting the value with time, the Stability, typically $\pm 2 \mathrm{ppm}$, would be added for one year.

SRL-1 High Accuracy Resistance Standard Requiring No Temperature Bath

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	Index p. 89

Using Transfer Standards

Benefits of Using Transfer Standards

In order to perform calibrations with a high degree of accuracy, reference standards must be employed at every range or decade of the measuring or calibration instrumentation.

Clearly, this can be difficult and costly since these standards must be highly stable and their precise values must be known with a high degree of certainty and with a sufficient resolution. To minimize the cost and difficulty, more practical means of performing such calibrations is to use transfer standards.

If one has a single standard that is calibrated by a national laboratory, one can then transfer the "certified" accuracy by comparing the "certified" standard to the transfer standard for as many as three decades.

The resulting accuracy of the transfer process can be much better (e.g. 1 ppm) than the accuracy of the transfer standard itself (e.g. 15 ppm). This may be understood as follows: a stable, but only moderately accurate, ruler could be used to accurately transfer measurement from one object of accurately known length to a second object of unknown length. This transfer is virtually limited only by the accuracy of the known length.

The IET HATS-LR Series of transfer standards (p. 33) consist of 12 matched equal value resistors of value R , designated as R1 through R12, which may be connected in series or parallel combinations to produce any number of values such as $R / 10, R$ and $10 R$. This permits the progressive transfers to higher or lower decades. For resistances above $1 \mathrm{M} \Omega$, the HATS-Y Series of transfer standards (p. 34) may be used, and the same discussion applies.

Setting for Various
Resistance Combinations
To obtain a resistance R of one step, any single resistor may be used, but it is clearly advantageous to use as many of them together as possible in combination. This not only allows the applied power to be divided among the set, but permits the use of a number of resistors in determining the net statistical resistance, always better for a larger number. In particular, 9 resistors are connected in a series-parallel combination. The best method to implement this circuit is to use the Model HATS-LR-SB set of shorting bars (p. 33).

Similarly, the value of R/10 may be implemented by a parallel combination of 10 resistors. This again may be conveniently done with the shorting bars. This takes statistical advantage of 10 resistors in combination. Of course, using 10 resistors in a series combination will produce 10R with the same statistical
and power advantage.
It is important to note that any series, parallel, or series-parallel configuration results in the net deviation being equal to the average deviation for that group of resistors no matter how they are connected, as long as the applied power is divided equally among the resistors. This is clearly the case with the R/10 and the 10 R configurations, i.e. they have the same deviations. It is also true with the 9 resistor series-parallel configuration, since the effect of deviation of a single missing resistor may be safely neglected. This property is very useful since it permits making accurate transfers across three decades with one single unit.

Calibration Transfers

As an example, a $10 \mathrm{k} \Omega$ standard may be compared with a HATS-LR unit with $10 \mathrm{k} \Omega$ steps connected in a series-parallel configuration, as described above, to provide a net 10 $k \Omega$ resistance. Once a comparison is made, a net deviation of 10 resistors (approximately the same as for 9 resistors) is obtained.

This average or net deviation remains constant for a series combination, and therefore the standard is effectively "transferred" with the same deviation plus the transfer accuracy of the unit to another decade, 10 R or $100 \mathrm{k} \Omega$ in this example.

This deviation is also transferrable to $1 \mathrm{k} \Omega$ by using the HATSLR in the parallel mode.

This process may be continued with another transfer standard. $1 \mathrm{M} \Omega$ steps in this example could first be configured in the $\mathrm{R} / 10$ mode to produce $100 \mathrm{k} \Omega$, which would be compared to the first standard set in the 10R mode. This now produces the additional values of $1 \mathrm{M} \Omega$ and $10 \mathrm{M} \Omega$ with known deviations close to the original standard. Only the transfer accuracy errors have to be added for each transfer.

Referring to the same example, a transfer may of course also be extended downwards. A standard with 100Ω steps would be set in a series for $1 \mathrm{k} \Omega$ and compared with the original standard and would subsequently provide a transfer at 100 Ω and 10Ω.

| Contents
 p. 2 |
| :---: | :---: | :---: |
| Applic. |
| pp. 4-8 | | Selection |
| :---: |
| pp. 9-11 | | Products |
| :---: |
| pp. 12-87 | | GenRad |
| :---: |
| products |
| pp. 50-87 | | Index |
| :--- |
| p. 89 |

Technical Applications

Glossary and Useful Definitions

Autoranging: The ability of an instrument to switch among ranges automatically. The ranges are usually in decade steps.
Bias Voltage: A voltage applied to a device to establish a reference level for the operation of the device during testing.
Capacitance: In a capacitor or system of conductors and dielectrics, the property that permits the storage of electrically separated charges when potential differences exist between the conductors. Capacitance is related to charge and voltage as follows: $\mathrm{C}=\mathrm{Q} / \mathrm{V}$, where C is the capacitance in farads, Q is the charge in coulombs, and V is the voltage in volts.
Cold Switching (or Dry Switching): Closing relay or switch contacts before applying voltage and current and removing voltage and current before opening the contacts. (Contacts do not make or break current.)
Compliance Voltage: The maximum output voltage of a constant current source.
Conductance (G): The reciprocal (1/R) of resistance, usually specified in Siemens (S).
Four-Terminal Resistance Measurement: See Kelvin terminals.

GPIB (General-Purpose Interface Bus): See IEEE-488
IEEE: Institute of Electrical and Electronics Engineers.
IEEE-488: A standard for remote control of test equipment.
Kelvin Terminals (Four-Terminal Resistance Measurement): A means for testing or making measurements in electronic devices and circuits, particularly when small impedances are being measured. Two sets of leads are used at each test point, similar with respect to thickness,
material and length; one set carries the test signal and the other connects with the measuring instrument. The effect of resistance in the leads is thus eliminated.

Power Coefficient of Resistance: A change in resistance with a change in applied power, expressed as a percentage or ppm of readings per watt.
Parts per Million (ppm) : A measure of small ratios, usually applied to calibrations or accuracies; $1 \mathrm{ppm}=10^{-6}$ or $.0001 \%$, and $1 \%=10,000 \mathrm{ppm}$.

Root Mean Square (rms): The square root of the average value of a waveform, indicative of power.
Root Sum Square (RSS): The square root of the sum of various components, typically used to combine the components contributing to uncertainty.
RTD, Resistance Temperature Detector: A sensor which will detect temperature by a varying resistance. IET offers manual or programmable RTD simulators.
Temperature Coefficient: A change in a quantity, such as resistance, with a change in temperature, expressed as a percentage or ppm of reading per degree change in temperature.
Thermal emf: Voltages resulting from temperature differences within a measuring circuit or when conductors of dissimilar metals are joined together. See p. 3 for more details.

Two-Terminal Resistance Measurement: A measurement where the same current flows through the unknown and the test leads. See Kelvin Terminals.
Voltage Coefficient of Resistance: A change in resistance with a change in applied voltage, expressed as a percentage or ppm of resistance per volt. This generally applies to very high resistance values only, over $10 \mathrm{G} \Omega$.
Zero Offset: The reading (desired or undesired) that occurs when the input terminals of a measuring instrument are shorted.
$\begin{array}{c}\text { Contents } \\
\text { p. } 2\end{array}$ Applic. \(\left.\begin{array}{c}Selection

pp. 4-8

pp. 9-11\end{array}\right]\)| Products |
| :---: |
| pp. 12-87 | | GenRad |
| :---: |
| products |
| pp. 50-87 | | Index |
| :---: |
| p. 89 |

DECADE SUBSTITUTERS • DIVIDERS

RESISTANCE

Series	Type	Basic Accuracy	Range	Max. Resolution	Features	Page
RS	General purpose	0.1\% (or better) to 1\%	1-1000 M	$10 \mathrm{~m} \Omega$	General purpose; economical; thumbwheel switches	12
OhmSource	Elec-Res Box	0.1\%	0.5 $\Omega-24 \mathrm{M}$ ת	$10 \mathrm{~m} \Omega$	Economical, microprocessor controlled	14
HARS-X	High accuracy	0.01\%	0-111 M	$1 \mathrm{~m} \Omega$	Laboratory grade;	15
HARS-Q	High accuracy	0.02\%	$0-111 \mathrm{M} \Omega$	$1 \mathrm{~m} \Omega$	high accuracy;	15
HARS-A	High accuracy	0.05\%	$0-111 \mathrm{M} \Omega$	$1 \mathrm{~m} \Omega$	high stability;	15
HARS-B	High accuracy	0.1\%	0-111 M Ω	$1 \mathrm{~m} \Omega$	low zero resistance; low temperature coefficie	17
HARS-L	Lab/cal grade	$25 \mathrm{ppm}+0.5 \mathrm{~m} \Omega$ absolute	$10 \mathrm{~m} \Omega-120 \mathrm{M} \Omega$	$1 \mathrm{~m} \Omega, 20 \mu \Omega$	suitable for RTD simulation.	
HARS-LX	Lab/cal grade	$20 \mathrm{ppm}+0.5 \mathrm{~m} \Omega$ absolute	$10 \mathrm{~m} \Omega-120 \mathrm{M} \Omega$	$1 \mathrm{~m} \Omega, 20 \mu \Omega$		
GenRad 1433	High accuracy	0.01\%	0-111 M Ω	$1 \mathrm{~m} \Omega$	Laboratory grade	68
HRRS	High resistance	0.01\%-1\%	0-11T ${ }^{\text {d }}$ +	10Ω	High resistance.	19
HRRS-5kV	High resistance High voltage	0.01\% - 1\%	0-11 T $\Omega+$	10Ω	High resistance to 5 kv .	20
HPRS	High power	0.5\%-1\%	0-10 M	$1 \mathrm{~m} \Omega$	High power; 25 W/step; 250 W max.	22
PRS	Programmable	0.01\% - 1\%	0-100 M Ω	$1 \mathrm{~m} \Omega$	IEEE-488 or RS-232 BCD	23
HATS-LR	Transfer standard	1 ppm transfer	$1 \Omega-100 \mathrm{k}$ //step	1Ω	High accuracy transfer standard	33
HATS-Y		2 ppm transfer	$100 \mathrm{k} \Omega-10 \mathrm{M} \Omega / \mathrm{step}$	$100 \mathrm{k} \Omega$		34
KVD-700	Kelvin-Varley voltage divider	0.1 ppm linearity	$0-1100 \mathrm{~V}$	0.1 ppm	Highly accurate for bridge applications to measure and calibrate voltages, resistance, etc.	36
KVD-600		0.5 ppm linearity				
KVD-500		0.05\% - 1\%	$1 \Omega-100 \mathrm{k} \Omega$	1 ppm	General purpose; economical; thumbwheel switches.	35
DP-500	True digital pot	0.05\% - 1\%	0-50 M	1 ppm	Suitable as component	35

CAPACITANCE

Series	Type	Basic Accuracy	Range	Max Resolution	Features	Page
CS	General purpose Decade	0.5\% - 4\%	0-1000 $\mu \mathrm{F}$	1 pF	General purpose; economical; thumbwheel switches.	12
HACS	$\begin{aligned} & \text { High accuracy } \\ & \text { Decade } \end{aligned}$	0.05\% - 0.1\%	100 pF - $1111 \mu \mathrm{~F}$	100 pF	Laboratory grade; high accuracy: high stability; low temperature coefficient.	37
HACS-Z	High accuracy low zero capacitance Decade	0.05\% - 0.1\%	$0-10,000 \mu \mathrm{~F}$	1 pF		38
GenRad 1412	Stable polystyrene	0.5\%	50 pF	1 pF	Precision decade with variable fine adjustment	60
GenRad 1413	High Accuracy low zero	0.05\%	0-1.111 11 pF	1 pF	Laboratory grade; high accuracy: high stability; low temperature coefficient.	62
GenRad 1417	High Capacitance Standard	0.02\%	$1 \mu \mathrm{~F}$-1F	$1 \mu \mathrm{~F}$	High value precision capacitance	64
PCS	Programmable Decade	0.5\% - 4\%	0-1000 $\mu \mathrm{F}$	1 pF	IEEE-488 or BCD programmable	23
GenRad 1422	Precision variable air capacitor	0.1 pF - 1.5 pF	10-1100 pF	0.02 pF	High resolution and stability; low loss.	66

INDUCTANCE

Series	Type	Basic Accuracy	Range	Max Resolution	Features	Page
LS	General purpose Decade	1% (or better) -4%	$1-100 \mathrm{H}$	$1 \mu \mathrm{H}$	General purpose; economical; thumbwheel switches.	12
PLS	Programmable Decade	2% (or better) -4%	$1-100 \mathrm{H}$	$1 \mu \mathrm{H}$	IEEE-488 or BCD programmable.	24
GenRad 1491	High Accuracy Decade	0.8%	$100 \mu \mathrm{H}-11 \mathrm{H}$	$100 \mu \mathrm{H}$	Laboratory grade; high accuracy: high stabily; low temperature coefficient.	53

IET LABS, INC. inthe GenRad $_{\text {Tradition }}$
534 Main Street, Westbury, NY 11590
TEL: (516) 334-5959 • (800) 899-8438 • FAX: (516) 334-5988

DECADE SUBSTITUTERS • DIVIDERS

VOLTAGE AND CURRENT

Series	Type	Basic Accuracy	Range	Max Resolution	Features
VI-700	Precision V-I	75 ppm	$100 \mu \mathrm{~V}-200 \mathrm{~V}$	$100 \mu \mathrm{~V}-200 \mathrm{~V}$	General purpose; programmable

RTD SIMULATORS

Series	Type	Basic Accuracy		Range	Max Resolution	Features
RTD-250	Manual, economy	200 ppm	$10 \Omega-11 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	General purpose, economy	
RTD	Manual, precision	50	$10 \Omega-11 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	General purpose; high accuracy; absolute settings; no zero subtraction required.	30
PRTD	Programmable	$0.01 \%-0.1 \%$	$4 \Omega-10 \mathrm{M} \Omega$	$1 \mathrm{~m} \Omega$	IEEE-488 or BCD programmable; absolute settings; no zero sub- traction required.	23

STANDARDS•RESISTANCE

Series	Type	Calibration Accuracy	Range	Features
SRL	Resistance, lab/cal grade	as low as 1 ppm	$1 \mathrm{~m} \Omega-10 \mathrm{~T} \Omega$	Extremely high precision and stability; very low temperature coefficient.
SRX	Resistance, high accuracy	as low as 2 ppm	$1 \mathrm{~m} \Omega-100 \mathrm{M} \Omega$	27
SRA	Resistance, economy	as low as 2 ppm	$1 \mathrm{~m} \Omega-100 \mathrm{M} \Omega$	Accurate, portable, economical.
SRC	Resistance, high resistance	as low as 15 ppm	$19 \mathrm{M} \Omega-10 \mathrm{~T} \Omega$	Accurate, portable, economical.
VRS-100	Resistance, high resistance	$2-2500 \mathrm{ppm}$	$1 \mathrm{k} \Omega-10 \mathrm{~T} \Omega$	Accurate, portable, economical
HATS	Transfer standard	1 ppm	$1 \Omega-10 \mathrm{M} \Omega / \mathrm{step}$	28

STANDARDS • CAPACITANCE

Series	Type	Calibration Accuracy	Range	Features
GenRad 1404	Capacitance, Nat'l std lab type	$5-11 \mathrm{ppm}$	$10-1000 \mathrm{pF}$	Very accurate and stable; very low TC
GenRad 1408	Capacitance w/oven	$5-11 \mathrm{ppm}$	$10-1000 \mathrm{pF}$	55
SCA	Capacitance, high accuracy	$0.01 \%-0.04 \%$	$1 \mathrm{pF}-1000 \mu \mathrm{~F}$	Dual unit with virtually zero TC
GenRad $\mathbf{1 4 0 9}$	Capacitance, high accuracy	0.01%	$10 \mathrm{pF}-1000 \mu \mathrm{~F}$	Accurate, portable, economical.

STANDARDS•INDUCTANCE

Series	Type	Calibration Accuracy	Range	Features
SLC	Inductance	0.8%	$100 \mu \mathrm{H}-10 \mathrm{H}$	Toroidal inductors, economy.
GenRad 1482	Inductance	0.025%	$100 \mu \mathrm{H}-10 \mathrm{H}$	32

Contents

p. 2 \begin{tabular}{c}
Applic.

pp. 4-8

Selection

pp. $9-11$

Products

penRad $12-87$

products

pp. $50-87$

 Index

p. 89

perion Guide
\end{tabular}

STANDARDS • VOLTAGE • CURRENT

Series	Type	Calibration Accuracy	Range	Features
HSVR	Voltage lab/cal grade	$1-2 \mathrm{ppm}$	$1.01 \mathrm{~V}-18.9 \mathrm{~V}$	Low temperature coefficient, small size.
VI-700	Precision voltage \& current source	75 ppm	$100 \mu \mathrm{~V}-200 \mathrm{~V}$	42

TEST INSTRUMENTS

Series	Type	Fage	
GenRad 1620	High Precision Capacitance Measurement System	$10^{-8} \mathrm{pF}$ to $11.1 \mathrm{pF}, 0.01 \%$ accuracy; 1 ppm resolution	79
GenRad 1621	Ultra Precision Capacitance Measurement System	$10^{-7} \mathrm{pF}$ to $10 \mu \mathrm{~F}-12$ digit resolution	
IMF-600A	Impedance and multifunction meter	Multipurpose; digital output, current output, analog output, autoranging.	
LCR-500	Impedance - LCR meter	87	
LOM-510A	High accuracy micro-ohmmeter	43	
Autoranging; portable; multiple features.			

WINDOWS AND IEEE-488 TOOLS

Series	Description	Features	Page
LabView	Software tool for designing and developing test, measurement, and data acquisition applications for Windows	Drag and drop interface; powerful data acquisition, I/O, math, display functions, and many other extensive features.	23-26
NI	IEEE-488 Interface software and hardware	Fast data transfer; IEEE-488.2 compatible. Supports Windows 95 and NT; compatible with Industry's most popular software packages.	23 23-26

AUDIO • SOUND - Formerly manufactured by GenRad

| Series | Type | Features |
| :--- | :---: | :---: | :---: |
| GenRad 1565 | Sound Level Meter | $4-140 \mathrm{~dB} ;$ ANSI type 2; A, B, C weighting. |
| GenRad 1562 | Sound Level Calibrator | 70 |

STROBES - Formerly manufactured by GenRad

| Series | Type | Features |
| :--- | :---: | :---: | :---: |
| GenRad 153 X | Stroboscopes, high speed, portable | Flash rates up to $25,000 \mathrm{fpm}$ |
| GenRad 1539 | Stroboslave light source | Externally tiggered flash rates up to $25,000 \mathrm{fpm}$ |
| GenRad 1542 | Strobotac, compact, economy | 74 |
| GenRad 1546 | Strobotac digital Stroboscope | Up to 3,800 bright white $f \mathrm{pm}$ |

Economical, indispensable tools for a varie ty of uses in engineering, design, troubleshooting, or service.

Best Substituter Value Available

- Direct reading - No fumbling with multiple slide or rotary switches
The IET family of digital substituters uses convenient side by side thumbwheel switches. Simply dial in the desired values and use.
- Accurate

In addition to standard 1\% economical units, tolerances of $0.1 \%, 0.05 \%, 0.01 \%$, and others are available.

- Broad choice of standard and optional models with many powerful features
A full line of standard substituters will satisfy most requirements. Other IET families of precision products include:
- Laboratory standards
- Transfer standards
- Programmable control
- RTD simulation
- High power
- Very high resistance
- Error proof

Since the impedance values are set and read directly, no mistakes can be made as with rotary or slide switch decade boxes. No need to examine and sum groups of switches - simply read one number.

- Color coded

Different colored switches separate the various impedance ranges.

- Compact, convenient, and rugged

Made of high impact plastic, these substituters are very portable and reduce clutter on a busy lab bench.

OPTIONS

- Shielded case with grounding post
- Panel mounting
- Low residual impedance switch
- Protection fuse
- Programmable control (See p. 23)

The RC-box, shown on the right, combines the features and specifications of both the R-box and the C-box in one convenient package. Ideal for setting timers, oscillators, and filters, the resistance and capacitance may be used independently, in series, or in parallel. A shorting link allows them to be coupled or separated.

RC-box RCS Series
Digital ResistanceCapacitance Substituter

-box

LS Series

Digital
Inductance
Substituter

Available from 0.01Ω to 299,999,999.9 Ω (RS-201 shown)

Available from 1 pF to $999.9999 \mu \mathrm{~F}$ (CS-300 shown)

Available from $1 \mu \mathrm{H}$ to 99.99999 H (LS-400 shown)

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	Index p. 89

RS•CS•LS•Series p.od2

SPECIFICATIONS - STANDARD MODELS

Model	RS-200	RS-201	RS-200W	RS-201W	CS-300	CS-301	RCS-500	RCS-502	LS-400	LS-400A
Type of Substituter	Resistance	Precision Resistance	Wide Range Resistance	Wide Range Precision Resistance	Capacitance	Precision Capacitance	ResistanceCapacitance	Precision ResistanceCapacitance	Wide-Range Inductance	Inductance
Accuracy*	$\pm(1 \%+25 \mathrm{~m} \Omega)$	$\pm(0.1 \%+25 \mathrm{~m} \Omega)$	$\pm(1 \%+30 \mathrm{~m} \Omega)$	$\pm(0.1 \%+30 \mathrm{~m}$) *	$\pm(4 \%+3 \mathrm{pF})$	$\pm(1 \%+3 \mathrm{pF})$	Combines RS-200 and CS-300	$\begin{gathered} \text { Combines } \\ \text { RS-201 and } \\ \text { CS-301 } \end{gathered}$	$\pm(2 \%+0.5 \mu \mathrm{H})$	$\pm(2 \%+0.5 \mu \mathrm{H})$
Decades	7		9		6				4	3
Range	0-9,999,999 Ω		0-99,999,999.9 Ω		0-99.9999 $\mu \mathrm{F}$				0-9.999 H	0.999 mH
Resolution	1Ω		0.1Ω		100 pF				1 mH	1 mH
Type of Components	Metal film resistors; wirewound or resistance wire for 0.9Ω and under				$100-900 \mathrm{pF}:$ mica $0.001-0.009$ $\mu \mathrm{~F}:$ polystyrene $0.01-0.9 \mu \mathrm{~F}:$ polycarbonate $1-9 \mu \mathrm{~F}:$ polyester $10-90 \mu \mathrm{~F}:$ polarized tantalum				Toroidal Inductors	
Ratings	$0.5 \mathrm{~W}^{* *}$				$100 \mathrm{~V}(20 \mathrm{~V}$ for $10-100 \mu \mathrm{~F})$				See table below	
Residual Impedance	$\leq 0.39 \Omega$ (≤ 0.056 ת/decade)		$\leq 0.5 \Omega$ ($\leq 0.056 \Omega /$ decade $)$		$\leq 42 \mathrm{pF}$ ($\leq 7 \mathrm{pF} /$ decade)				$\leq 0.23 \Omega(\leq 0.05$. 56 ת/decade)
Physical	$\begin{aligned} & 8.1 \times 7.9 \times 5.6 \mathrm{~cm} ; 184 \mathrm{~g} \\ & (3.2 \times 3.1 \times 2.2 \mathrm{in} ; 6.5 \mathrm{oz} .) \\ & \hline \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm} ; 235 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in} ; 8.3 \mathrm{oz}) \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm} ; 235 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in} ; 8.3 \mathrm{oz}) \\ & \hline \end{aligned}$		$\begin{aligned} & 18.8 \times 11 \times 6 \mathrm{~cm}, 410 \mathrm{~g} \\ & (7.4 \times 4.3 \times 2.4 \mathrm{in}, 14 \mathrm{oz}) \\ & \hline \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm}, 230 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in}, 8 \mathrm{oz}) \\ & \hline \end{aligned}$	

* Accuracy after subtraction of the Residual Impedance;
traceable to SI.
RS-201W: 0.2% for $\geq 10 \mathrm{M} \Omega$.
CS-Series Test Conditions: $1 \mathrm{kHz} ; 1 \mathrm{Vrms} ; 120 \mathrm{~Hz}$ for $\geq 10 \mu \mathrm{~F}$, series model; $23^{\circ} \mathrm{C}$.
LS-Series Test Conditions: 1 kHz; 1 Vrms ; series model; $23^{\circ} \mathrm{C}$.
** Higher power resistance substituters (1 W or higher) available; see optional models below or HPRS data sheet.

Additional information for Inductance Substituters

Inductance	Frequency Range	Max. Q	Rating
$0.1-0.9 \mathrm{mH}$	$300 \mathrm{~Hz}-2 \mathrm{MHz}$	$100 @ 800 \mathrm{kHz}$	700 mA
$1-9 \mathrm{mH}$	$300 \mathrm{~Hz}-1 \mathrm{MHz}$	$80 @ 40 \mathrm{kHz}$	500 mA
$10-90 \mathrm{mH}$	$300 \mathrm{~Hz}-800 \mathrm{kHz}$	$80 @ 40 \mathrm{kHz}$	300 mA
$0.1-0.9 \mathrm{H}$	$300 \mathrm{~Hz}-200 \mathrm{kHz}$	$40 @ 20 \mathrm{kHz}$	100 mA
$1-9 \mathrm{H}$	$200 \mathrm{~Hz}-20 \mathrm{kHz}$	$30 @ 8 \mathrm{kHz}$	20 mA
$10-90 \mathrm{H}$	$200 \mathrm{~Hz}-6 \mathrm{kHz}$	$60 @ 2 \mathrm{kHz}$	4 mA

OPTIONAL MODELS
In order to satisfy any requirements for decade substituters, construct a part number from the table below, or consult

* See HARS and HACS Series for standards grade resistance and capacitance substituters; **for Q , A, and B tolerances, 0.2% for $\geq 10 \mathrm{M} \Omega$.

OPTIONS

-CC-25	Dual Lead Clip - plugs into dual binding posts for convenient lead connections
-LR	Residual Impedance is reduced to 0.06Ω or 7 pF on lowest decade by isolating it from the remaining decades
-SC	Shielded case with grounding terminal
-PM	Panel mounting version
-FP	Unit supplied with series 2 A fuse for added protection (User may substitute other fuses; residual impedance will increase by 0.06Ω for 2 A fuses)

-LP Unit supplied with low profile binding post
OTHER VERSIONS
Programmable Version High Power Version
High Accuracy Version
High Resistance Version

See PRS/PCS/PLS data sheet (p. 17)
See HPRS data sheet (p. 16)
See HARS data sheets (p. 11)
See HRRS data sheet (p. 15)

ohm Source Series

Electronically Controlled Re sistance Box Your SOURCE of Resistance!

The ohmSOURCE Resistance Box product line is like nothing you have ever seen before! Micropro-cessor-controlled and loaded with innovative features, the ohmSOURCE Resistance Box succeeds in providing highly accurate and precise resistance values in an intuitive and user-friendly fashion. With a resistance value range of up to $24 \mathrm{M} \Omega$ and a power rating of up to 1 Watt, the handheld ohmSOURCE is practical for all industries including automotive, medical, test \& measurement, telecommunications, and HVAC.

Automatic RTD simulation

The Translation Table Add-on enables the user to download and store data tables in the ohmSOURCE Resistance Decade Box for translating a known, user-definable physical characteristic into a resistance value. Use this option to simulate

FEATURES AND BENEFITS

- Keypad Interface

Enter resistance values using a calculator-style keypad.

- Quick Value Keys

Recall up to four frequently used resistance values with one touch.

- Memory Keys

Store resistance values in up to 10 additional memory locations (0-9).

- Current Limiter (user-defined)

Limits the amount of current passing through the ohmSOURCE to prevent possible damage.

- Increment Value Setting

Change resistance by user-defined increments or select standard resistance values ($1 \%, 5 \%, 10 \%$)

- Open Key

Conveniently 100\% mechanically isolate the ohmSOURCE from the application with the touch of a key.

- Easy-to-Read Display

The output resistance value, in ohms, is easily read from the large, graphical LCD display.
any type of transducer that converts a physical phenomenon into a resistance value: thermistors, conductivity sensors, etc... Each table may contain up to 256 equivalences.

Using the RS-232 interface and the Software Development Kit, you can control the ohmSOURCE from a remote computer and design automated test equipment to fit your custom application.

Uses real resistors.

RID values may be stored and recalled by
temperature setting

- Automatic Residual Resistance

The residual resistance of the ohmSOURCE is automatically included in the output resistance value.
No zero subtraction is required.

- Auto-Off Power

The ohmSOURCE automatically shuts off after 4 minutes of inactivity to conserve power.

- Field Calibration

Easily calibrate the ohmSOURCE with a high precision ohmmeter. Annual factory calibration recommended.

- FLASH Software Updates

The microprocessor has FLASH program memory to allow reprogramming of product firmware.

- Accessories

OS-91.001 Software Development Kit

- Software \& Hardware Tools for Advanced Customization OS-91.002 Test Leads
- Dual Banana Plug to Mini-Alligator Clips

SPECIFICATIONS

	Model OS-250	Model OS-260	Model OS-270
Range	Rmin* to $24,000,000 \Omega$	Rmin* to 24,000,000.0 Ω	Rmin* to 1,500,000.00 Ω
Resolution	1Ω	0.1Ω	. 01Ω
Accuracy no zero subtraction	$\pm 1 \Omega$, for $1 \mathrm{k} \Omega$ and under $\pm 0.1 \%$, for over $1 \mathrm{k} \Omega$	$\pm 0.5 \Omega$, for $1 \mathrm{k} \Omega$ and under $\pm 0.1 \%$, for over $1 \mathrm{k} \Omega$	$\pm 0.1 \Omega$, for $5 \mathrm{k} \Omega$ and under $\pm 0.01 \%$, for over $5 \mathrm{k} \Omega$
Power Rating	1.0 W	1.0 W	1.0 W
Power Supply	4 AA alkaline batteries	4 AA alkaline batteries	4 AA alkaline batteries

Rmin*: Minimum settable resistance, detetrmined at calibration, approximately 1Ω.

Tight tole rance laboratory grade decade substituters, for applications requiring a cost effective figf performance resistance decade box.

- Resistance from $1 \mathrm{~m} \Omega$ to $111 \mathrm{M} \Omega$
- Excellent stability - $10 \mathrm{ppm} / \mathrm{yr}, 25 \mathrm{ppm} / 3 \mathrm{yrs}$
- Wide choice - single through 11 decade units
- High accuracy - 0.01\% (100 ppm)
- Very low zero resistance: <1 m Ω per decade
- High performance solid silver alloy switches
- Low temperature coefficient - $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Noninductive or low inductance resistors
- Rack mounting available
- Special and custom configurations available

6 Decade HARS-X High Accuracy Resistance Substituter

- See $\mathcal{H} R 尺$ Series for higher resistance
- See $\mathcal{H P R S}$ Series for figher power
- See $\mathcal{H A R S}$-LSeries for figher accuracy
- See $\mathcal{R I D}$ Series for $\mathfrak{R T D}$ simulators
- See $\mathcal{P R S}$ Series for programmable models

SPECIFICATIONS

Resistance per Step	Total Decade Resistance	$\begin{gathered} \text { Stability } \\ \text { (} \pm \text { ppm/year) } \end{gathered}$	$\begin{aligned} & \text { Long Term } \\ & \text { Stability } \\ & \text { (} \pm \mathrm{ppm} / 3 \text { years) } \end{aligned}$	Temperature Coefficient ($\pm \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)	Max. Power (W/step)	$\begin{aligned} & \text { Maximum } \\ & \text { current } \\ & \text { (per decade) } \end{aligned}$	Maximum voltage (per step)
$1 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	100	700	50	0.04	8 A	5 mV
$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	50	350	20	0.2	4 A	40 mV
$100 \mathrm{~m} \Omega$	1Ω	30	50	20	0.25	1.6 A	0.16 V
1Ω	10Ω	10	25	20	0.6	0.8 A	0.8 V
10Ω	100Ω	10	25	15	0.6	0.25 A	2.5 V
100Ω	$1 \mathrm{k} \Omega$	10	25	5	0.6	80 mA	8 V
$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10	25	5	0.5	23 mA	23 V
$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	10	25	5	0.5	7 mA	70 V
$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	10	25	5	0.5*	2.3* mA	$230 \mathrm{~V}^{*}$
$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	10	25	10	0.5*	0.7* mA	$700 \mathrm{~V}^{*}$
$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$	50	40	10	0.1*	0.1* mA	$1000 \mathrm{~V}^{*}$

* Subject to maximum of 2000 V to case.

Accuracy: After subtraction of zero resistance, at $23^{\circ} \mathrm{C}$; traceable to SI.

$$
\begin{aligned}
& \text { HARS-L: } \pm 20 \mathrm{ppm}(\text { see p 17) } \\
& \text { HARS-Z: } \pm(50 \mathrm{ppm}+1 \mathrm{~m} \Omega) \\
& \text { HARS-X: } \pm(0.01 \% \quad+2 \mathrm{~m} \Omega) ; \pm 0.03 \% \text { for } 10 \mathrm{M} \Omega \text { steps. } \\
& \text { HARS-Q: } \pm(0.02 \%+2 \mathrm{~m} \Omega) ; \pm 0.05 \% \text { for } 10 \mathrm{M} \Omega \text { steps. } \\
& \text { HARS-A: } \pm(0.05 \% \quad+2 \mathrm{~m} \Omega) ; \pm 0.1 \% \text { for } 10 \mathrm{M} \Omega \text { steps. } \\
& \text { HARS-B: } \pm(0.1 \% \quad+4 \mathrm{~m} \Omega) ; \pm 1 \% \text { for } 10 \mathrm{M} \Omega \text { steps. }
\end{aligned}
$$

Zero Resistance: <1 $\mathrm{m} \Omega$ per decade, at dc; slightly higher for 7-10 decades;, for HARS-X version; (<4 $\mathrm{m} \Omega$ per decade for HARS-A and HARS-B)

Maximum Voltage to Case: 2000 V peak.
Operating Environment: +10 to $40^{\circ} \mathrm{C},<80 \%$ RH.
Switch Type: 11 positions; "0"-"10"; multiple solid silver alloy contacts.

Switch Capacitance: $<4 \mathrm{pF}$ per switch.
Terminals: Low-thermal-emf beryllium-copper binding posts with standard 3/4 inch spacing, plus shield terminal; connections from the rear of the instrument are available with RO option.

Mechanical:

Model	Dimensions	Weight
1 decade	$\begin{gathered} 7.7 \mathrm{~cm} \mathrm{~W} \times 7.7 \mathrm{~cm} \mathrm{H} \times 8.4 \mathrm{~cm} \mathrm{D} \\ \left(3^{\prime \prime} \times 3^{\prime \prime} \times 3.3^{\prime \prime}\right) \end{gathered}$	0.45 kg (1.0 lb)
2-3 decades	$\begin{gathered} 31 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(12.2^{\prime \prime} \times 3.5^{\prime \prime} \times 4^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 1.7 \mathrm{~kg} \\ (3.8 \mathrm{lb}) \end{gathered}$
4-5 decades	$37.5 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D}$	2.0 kg (4.3 lb)
6 decades	$\begin{gathered} 43.9 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(17.3^{\prime \prime} \times 3.5^{\prime \prime} \times 4\right. \text { ") } \end{gathered}$	2.2 kg (4.8 lb)
7 decades		2.4 kg (5.3 lb)
8 decades	$\begin{gathered} 48.3 \mathrm{~cm} \mathrm{~W} \times 17.8 \mathrm{~cm} \mathrm{H} \times 19.7 \mathrm{~cm} \mathrm{D} \\ \left(19.0^{\prime \prime} \times 7.0^{\prime \prime} \times 7.8^{\prime \prime}\right) \end{gathered}$	2.6 kg (5.7 lb)
9 decades		$\begin{gathered} 5.1 \mathrm{~kg} \\ (11.2 \mathrm{lb}) \end{gathered}$
10 decades		5.3 kg (11.7 lb)
11 decades		$5.4 \mathrm{~kg}(11.9 \mathrm{lb})$

HARS-X Series

SINGLE DECADE UNITS

Single decade units are available with resistance as low as $1 \mathrm{~m} \Omega$ per step to as high as $10 \mathrm{M} \Omega$ per step. These units satisfy many system applications requiring only a single decade while maintaining all the quality features of the HARS series.

Each decade is enclosed in an aluminum case which can serve as a shield.

It may be panel mounted and integrated with additional units to form potentiometer circuits or other configurations.

Each unit consists of low inductance resistors in series, with a high performance solid silver alloy contact switch.

Single Decade HARS-X Unit

ORDERING INFORMATION

Model*	Total Res. (0.01\% Accuracy)	No. of Decades	Resolution (Ω)
HARS-X-1-0.001	0.01	1	0.001
HARS-X-1-0.01	0.1	1	0.01
HARS-X-1-0.1	1	1	0.1
HARS-X-1-1	10	1	1
HARS-X-1-10	100	1	10
HARS-X-1-100	1 k	1	100
HARS-X-1-1K	10 k	1	1 k
HARS-X-1-10K	100 k	1	10 k
HARS-X-1-100K	1 M	1	100 k
HARS-X-1-1M	10 M	1	1 M
HARS-X-1-10M	100 M	1	10 M
HARS-X-2-0.001	0.11	2	0.001
HARS-X-2-0.01	1.1	2	0.01
HARS-X-2-0.1	11	2	0.1
HARS-X-2-1	110	2	1
HARS-X-2-10	1.1 k	2	10
HARS-X-2-100	11 k	2	100
HARS-X-2-1K	110 k	2	1 k
HARS-X-2-10K	1.1 M	2	10 k
HARS-X-2-100K	11 M	2	100 k
HARS-X-2-1M	110 M	2	1 M
HARS-X-3-0.001	1.11	3	0.001
HARS-X-3-0.01	11.1	3	0.01
HARS-X-3-0.1	111	3	0.1
HARS-X-3-1	1.11 k	3	1
HARS-X-3-10	11.1 k	3	10
HARS-X-3-100	111 k	3	100
HARS-X-3-1K	1.11 M	3	1 k
HARS-X-3-10K	11.1 M	3	10 k
HARS-X-3-100K	111 M	3	100 k
HARS-X-4-0.001	11.11	4	0.001
HARS-X-4-0.01	111.1	4	0.01
HARS-X-4-0.1	1.111 k	4	0.1
HARS-X-4-1	11.11 k	4	1

* For less exacting applications, more economical tolerances are available: - use "A" for "X" in part number for 0.05% basic accuracy, in lieu of $.01 \%$ - use "Q" for "X" in part number for 0.02\% basic accuracy, in lieu of .01\% - use "B" for "X" in part number for 0.1\% basic accuracy, in lieu of .01\%

Model*	Total Res. (0.01\% Accuracy)	No. of Decades	Resolution (Ω)
HARS-X-4-10	111.1 k	4	10
HARS-X-4-100	1.111 M	4	100
HARS-X-4-1K	11.11 M	4	1 k
HARS-X-4-10K	111.1 M	4	10 k
HARS-X-5-0.001	111.11	5	0.001
HARS-X-5-0.01	1.1111 k	5	0.01
HARS-X-5-0.1	11.111 k	5	0.1
HARS-X-5-1	111.11 k	5	1
HARS-X-5-10	1.1111 M	5	10
HARS-X-5-100	11.111 M	5	100
HARS-X-5-1K	111.11 M	5	1 k
HARS-X-6-0.001	1.11111 k	6	0.001
HARS-X-6-0.01	11.1111 k	6	0.01
HARS-X-6-0.1	111.111 k	6	0.1
HARS-X-6-1	1.11111 M	6	1
HARS-X-6-10	11.1111 M	6	10
HARS-X-6-100	111.111 M	6	100
HARS-X-7-0.001	11.11111 k	7	0.001
HARS-X-7-0.01	111.1111 k	7	0.01
HARS-X-7-0.1	1.111111 M	7	0.1
HARS-X-7-1	11.11111 M	7	1
HARS-X-7-10	111.1111 M	7	10
HARS-X-8-0.001	111.11111 k	8	0.001
HARS-X-8-0.01	1.1111111 M	8	0.01
HARS-X-8-0.1	11.111111 M	8	0.1
HARS-X-8-1	111.11111 M	8	1
HARS-X-9-0.001	1.11111111 M	9	0.001
HARS-X-9-0.01	11.1111111 M	9	0.01
HARS-X-9-0.1	111.111111 M	9	0.1
HARS-X-10-0.001	11.11111111 M	10	0.001
HARS-X-10-0.01	111.1111111 M	10	0.01
HARS-X-11-0.001	111.11111111 M	11	0.001

OPTIONS

- RM Rack mountable case for standard 19" rack
-K Kelvin type 4-terminal binding posts
- RO Rear output binding posts IET LABS, INC. in the GenRad ${ }_{\text {Tradition }}$

TEL: (516) 334
534 Main Street, Westbury, NY 11590
TEL: (516) 334-5959 • (800) 899-8438 • FAX: (516) 334-5988

$\begin{gathered} \text { Contents } \\ \text { p. } 2 \end{gathered}$	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	$\begin{aligned} & \text { GenRad } \\ & \text { products } \\ & \text { pp. } 50-87 \end{aligned}$	Index p. 89	Laboratory Standard Decade Resistance Substituter

Abstract

Highest accuracy version of the IET Labs re. sistance substituters for the most exacting calibration and test applications. The $\mathcal{H} \mathcal{A} R S$ - $\mathcal{L X}$ Series features a continuous rfeostat as an option.

- High accuracy-20 ppm
- High stability - 5 ppm/yr
- Low temperature coefficient - as low as $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- High performance solid silver contact switches
- Resistance from $10 \mathrm{~m} \Omega$ to over $121 \mathrm{M} \Omega$
- $1 \mathrm{~m} \Omega$ or optional $20 \mu \Omega$ resolution
- Hermetically sealed, low inductance resistors
- Precise fixed minimum resistance

HARS-LX Laboratory Standard Decade Resistance Substituter (shown with optional rheostat)

STANDARD MODELS

Series	HARS-L	HARS-LX
Description	Tight tolerance versions of the IET labs HARS-X Series for applications requiring a cost effective high performance resistance decade standard suitable for laboratory and field calibrations.	Highest performance decade resistance substituter with the tightest tolerance, stability, repeatability, and temperature coefficient.
Resistor type	Resistance wire for 0.1 steps and under; hermetically sealed, wirewound non-inductive resistors for 1Ω steps and over.	
Range	$10 \mathrm{~m} \Omega$ up to $12.1 \mathrm{M} \Omega$ in 1 to 10 decades; (minimum may be lower for units with fewer decades)	
Resolution	$1 \mathrm{~m} \Omega$ discrete steps; $20 \mu \Omega$ continuous resolution rheostat; $10 \mathrm{~m} \Omega$ full scale, option RH.	
Initial Accuracy (absolute)	$< \pm(25 \mathrm{ppm}+0.5 \mathrm{~m} \Omega)$; at $23^{\circ} \mathrm{C}$, no zero subtraction required, 4-terminal,"true-ohm" measurement, SI traceable.	$< \pm(20 \mathrm{ppm}+0.5 \mathrm{~m} \Omega)$; at $23^{\circ} \mathrm{C}$, no zero subtraction required, 4-terminal,"true-ohm" measurement, SI traceable
Initial Adjustment Accuracy	$\pm 1 \mathrm{ppm}$ for $10 \mathrm{k} \Omega$ steps; $\pm 1.5 \mathrm{ppm}$ for $100 \mathrm{k} \Omega$ steps; ± 3 (For increased accuracy of the 1Ω to $1 \mathrm{M} \Omega$ decades, in	pm for $1 \mathrm{M} \Omega$ steps. idual resistors for these decades are trimmable.)
Temperature Coefficient	$< \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 10Ω steps and under; $< \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 100Ω steps and over. $< \pm 50 \mu \Omega /{ }^{\circ} \mathrm{C}$ for wiring and switch resistance.	$< \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 1Ω steps and under; $< \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 10Ω steps; $< \pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 100Ω steps and over; $< \pm 50 \mu \Omega /{ }^{\circ} \mathrm{C}$ for wiring and switch resistance.
Stability	$< \pm(20 \mathrm{ppm}+0.5 \mathrm{~m} \Omega) /$ year; $< \pm 5 \mathrm{ppm} /$ year, typical.	
Minimum Resistance	$10 \mathrm{~m} \Omega \pm 0.5 \mathrm{~m} \Omega$; limited by the lowest settable position, "1", of the $10 \mathrm{~m} \Omega /$ step decade.	
Power Maximum	0.5 W per step up to 3 W total or 2 A max.	1 W per step up to 5 W total or 2 A max.
Calibration Conditions	Four-terminal measurement, low power, at $23^{\circ} \mathrm{C} ; 30 \%$ to $60 \% \mathrm{RH}$.	
Switch Type	11 positions, "0"-"10", multiple solid silver alloy contacts, with short term contact resistance repeatability of $<100 \mu \Omega$.	
Breakdown Voltage	1500 V peak to case	
Power Coefficient	$< \pm 1000 \mathrm{ppm} / \mathrm{W}$ for 0.1Ω steps and under; $< \pm 400 \mathrm{ppm} / \mathrm{W}$ for 1Ω steps; $< \pm 300 \mathrm{ppm} / \mathrm{W}$ for 10Ω steps; $< \pm 100 \mathrm{pm} / \mathrm{W}$ for 100Ω steps and over. $<+50 \mu \Omega / W$ for wiring and switch resistance.	

HARS-L•HARS-LX•Series

Terminals: Low thermal emf beryllium copper binding posts with standard $3 / 4$ inch spacing plus shield terminal; connection from the rear of the instrument is available as option RO.

Model	Dimensions	Weight
1 decades	$7.7 \mathrm{~cm} \mathrm{~W} \times 7.7 \mathrm{~cm} \mathrm{H} \times 8.4 \mathrm{~cm} \mathrm{D}$	0.45 kg
	$\left(3^{\prime \prime} \times 33^{\prime \prime} \times 3.3^{\prime \prime}\right)$	$(1.0 \mathrm{lb})$
$2-4$	$37.5 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D}$	1.7 kg
decades	$\left(14.8 \mathrm{lb} \times 3.5^{\prime \prime} \times 4\right.$ ")	2.0 kg
5 decades		$(4.3 \mathrm{lb})$

Model	Dimensions	Weight
6 and 7 decades	$43.9 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{Hx} 10.2 \mathrm{~cm} \mathrm{D}$	$\begin{gathered} 2.2 \mathrm{~kg} \\ (4.8 \mathrm{lb}) \end{gathered}$
8 decades	(17.3" $\times 3.5$ " $\times 4$ ")	$\begin{gathered} 5.1 \mathrm{~kg} \\ (13.0 \mathrm{lb}) \end{gathered}$
9 and 10 decades	$\begin{gathered} 48.3 \mathrm{~cm} \text { W } \times 17.8 \mathrm{~cm} \mathrm{H} \times 19.7 \mathrm{~cm} \mathrm{D} \\ \left(19.0^{\prime \prime} \times 7.0^{\prime \prime} 7.8^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 5.1 \mathrm{~kg} \\ (13.0 \mathrm{lb}) \end{gathered}$
11 decades	$\begin{gathered} 48.3 \mathrm{~cm} \mathrm{~W} \times 32.5 \mathrm{~cm} \mathrm{H} \times 27.0 \mathrm{~cm} \mathrm{D} \\ \left(19.0^{\prime \prime} \times 12.8^{\prime \prime} 10.5^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 9.1 \mathrm{~kg} \\ (20.0 \mathrm{lb}) \end{gathered}$

OPTIONAL RHEOSTAT

HARS-LX with Optional Rheostat Configuration

For high resolution applications, a $10 \mathrm{~m} \Omega$ rheostat may be added for the lowest step. It is a $20 \mu \Omega$ resolution "decade". In order to eliminate contact resistance and thermal emf, the HARS-LX integrates the rheostat as shown. In this way, the
wiper is in the low potential circuit, which is the high impedance lead. As a result, voltage and contact resistance effects are removed by being effectively added to the input impedance of the measuring instrument.

ORDERING INFORMATION

Model (Select L or LX accuracy grade)	Total Resistance (Ω)	No. of Decades	(Ω)
HARS-L(LX)-1-0.001	0.01	1	0.001
HARS-L(LX)-1-0.01	0.1	1	0.01
HARS-L(LX)-1-0.1	1	1	0.1
HARS-L(LX)-1-1	10	1	1
HARS-L(LX)-1-10	100	1	10
HARS-L(LX)-1-100	1 k	1	100
HARS-L(LX)-1-1K	10 k	1	1 k
HARS-L(LX)-1-10K	100 k	1	10 k
HARS-L(LX)-1-100K	1 M	1	100 k
HARS-L(LX)-1-1M	10 M	1	1 M
HARS-L(LX)-2-0.001	0.11	2	0.001
HARS-L(LX)-2-0.01	1.1	2	0.01
HARS-L(LX)-2-0.1	11	2	0.1
HARS-L(LX)-2-1	110	2	1
HARS-L(LX)-2-10	1.1 k	2	10
HARS-L(LX)-2-100	11 k	2	100
HARS-L(LX)-2-1K	110 k	2	1 k
HARS-L(LX)-2-10K	$1.1 \mathrm{M} \Omega$	2	10 k
HARS-L(LX)-2-100K	$11 \mathrm{M} \Omega$	2	100 k
HARS-L(LX)-3-0.001	1.11	3	0.001
HARS-L(LX)-3-0.01	11.1	3	0.01
HARS-L(LX)-3-0.1	111	3	0.1
HARS-L(LX)-3-1	1.11 k	3	1
HARS-L(LX)-3-10	11.1 k	3	10
HARS-L(LX)-3-100	111 k	3	100
HARS-L(LX)-3-1K	1.11 M	3	1 k
HARS-L(LX)-3-10K	11.1 M	3	10 k

OPTIONS

Model (Select L or LX accuracy grade)	Total Resistance (Ω)	No. of Decades	(Ω)
HARS-L(LX)-4-0.001	11.11	4	0.001
HARS-L(LX)-4-0.01	111.1	4	0.01
HARS-L(LX)-4-0.1	1.111 k	4	0.1
HARS-L(LX)-4-1	11.11 k	4	1
HARS-L(LX)-4-10	111.1 k	4	10
HARS-L(LX)-4-100	1.111 M	4	100
HARS-L(LX)-4-1K	11.11 M	4	1 k
HARS-L(LX)-5-0.001	111.11	5	0.001
HARS-L(LX)-5-0.01	1.1111 k	5	0.01
HARS-L(LX)-5-0.1	11.111 k	5	0.1
HARS-L(LX)-5-1	111.11 k	5	1
HARS-L(LX)-5-10	1.1111 M	5	10
HARS-L(LX)-5-100	11.111 M	5	100
HARS-L(LX)-6-0.001	1.11111 k	6	0.001
HARS-L(LX)-6-0.01	11.111 k	6	0.01
HARS-L(LX)-6-0.1	11.111 k	6	0.1
HARS-L(LX)-6-1	1.11111 M	6	1
HARS-L(LX)-6-10	11.1111 M	6	10
HARS-L(LX)-7-0.001	11.11111 k	7	0.001
HARS-L(LX)-7-0.01	111.111 k	7	0.01
HARS-L(LX)-7-0.1	1.111111 M	7	0.1
HARS-L(LX)-7-1	11.11111 M	7	1
HARS-L(LX)-8-0.001	111.11111 k	8	0.001
HARS-L(LX)-8-0.01	1.2111111 M	8	0.01
HARS-L(LX)-8-0.1	1.211111 M	8	0.1
HARS-L(LX)-9-0.001	1.21111111 M	9	0.001
HARS-L(LX)-9-K-RM	1.21111111 M	9	0.001
HARS-L(LX)-9-0.01	12.1111111 M	9	0.01
HARS-L(LX)-10-0.001	12.11111111 M	10	0.001
HARS-L(LX)-11-0.001	121.11111111 M	11	0.001

- RH $10 \mathrm{~m} \Omega$ rheostat for lowest decades, $20 \mu \Omega$ resolution.
- RO Rear output binding posts

Economical figh performance figh resistance for all laboratory, test, and calibration needs

- High accuracy - up to .01\%
- High stability - up to $10 \mathrm{ppm} / \mathrm{yr}$
- Excellent TC - as low as $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- High voltage versions available

SPECIFICATIONS

- One to ten decades up to $>1 \mathrm{~T} \Omega$
- Low voltage coefficient - as low as $0.2 \mathrm{ppm} / \mathrm{V}$

6 Decade HRRS High Resistance Substituter

Resistance Per Step	Decade Resistance	Accuracy Option			Max Voltage (Per Step)	Maximum Voltage (V)	Temp. Coefficient $\pm \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Voltage Coefficient $\pm p p m / V$	Stability $\pm p p m / y e a r$
		Q	B	F					
10Ω	100Ω	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	2.5 V	25	15	0	10
100Ω	$1 \mathrm{k} \Omega$	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	8 V	80	5	0	10
$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	23 V	230	5	0	10
$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	70 V	700	5	0	10
$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	$230 \mathrm{~V}^{*}$	2000	5	0	10
$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$\pm 0.03 \%$	$\pm 0.1 \%$	$\pm 1 \%$	1000 V*	2000	5	0.2	10
$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$	$\pm 0.03 \%$	$\pm 0.1 \%$	$\pm 1 \%$	$1000 \mathrm{~V}^{*}$	2000	15	0.2	50
$100 \mathrm{M} \Omega$	$1 \mathrm{G} \Omega$	$\pm 0.1 \%$	$\pm 0.2 \%$	$\pm 1 \%$	$1000 \mathrm{~V}^{*}$	2000	25	0.2	100
$1 \mathrm{G} \Omega$	$10 \mathrm{G} \Omega$	$\pm 0.2 \%$	$\pm 0.5 \%$	$\pm 1 \%$	1000 V*	2000	50	1	500
$10 \mathrm{G} \Omega$	$100 \mathrm{G} \Omega$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 1 \%$	$1000 \mathrm{~V}^{*}$	2000	50	1	500
$100 \mathrm{G} \Omega$	$1 \mathrm{~T} \Omega$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 3 \%$	1000 V*	2000	200	5	500

* Subject to maximum of 2000 V (dc + ac peak);

See HRRS-5kV Series (p. 20) for higher voltage.

Zero Resistance: $<3 \mathrm{~m} \Omega$ per decade at dc. Operating Conditions: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$; $<50 \% \mathrm{RH}$. Terminals: Two five-way binding posts on 2 special, low leakage Kel-F insulating sockets and one metal ground post, for shielding, electrically connected to the case.

Model	Dimensions	Weight
3 decades	$\begin{gathered} 31.2 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(12.3^{\prime \prime} \times 3.5^{\prime \prime} \times 4.0^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 1.4 \mathrm{~kg} \\ (3.0 \mathrm{lb}) \end{gathered}$
4 decades	$\begin{gathered} 37.5 \mathrm{~cm} \text { W } \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(14.8^{\prime \prime} \times 3.5^{\prime \prime} \times 4.0^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 1.6 \mathrm{~kg} \\ (3.5 \mathrm{lb}) \end{gathered}$
5 decades		1.9 kg (4.0 lb)
6 and 7 decades	$\begin{gathered} 43.9 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(17.3^{\prime \prime} \times 3.5^{\prime \prime} \times 4.0^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~kg} \\ (4.5 \mathrm{lb}) \end{gathered}$

ORDERING INFORMATION

Model* *	Total Resistance (Ω)	No. of De- cades	Resolution
(Ω)			
HRRS-F-1-100G-5KV**	11 T	1	100 G
HRRS-B-2-1M	110 M	2	1 M
HRRS-B-2-10M	1.1 G	2	10 M
HRRS-B-2-100M	11 G	2	100 M
HRRS-B-2-1G	110 G	2	1 G
HRRS-B-2-10G-5KV**	1.1 T	2	10 G
HRRS-B-3-100K	111 M	3	100 k
HRRS-B-3-1M	1.11 G	3	1 M
HRRS-B-3-10M	11.1 G	3	10 M
HRRS-B-3-100M	111 G	3	100 M
HRRS-B-3-1G-5KV**	1.11 T	3	1 G
HRRS-B-4-10K	111.1 M	4	10 k
HRRS-B-4-100K	1.111 G	4	100 k
HRRS-B-4-1M	11.11 G	4	1 M
HRRS-B-4-10M	111.1 G	4	10 M
HRRS-B-4-100M-5KV**	1.111 T	4	100 M

[^0]| Model* | Total
 Resistance
 (Ω) | No.
 of
 Decades | Resolution
 (Ω) |
| :--- | :---: | :---: | :---: |
| HRRS-B-5-1K | 111.11 M | 5 | 1 k |
| HRRS-B-5-10K | 1.1111 G | 5 | 10 k |
| HRRS-B-5-100K | 11.111 G | 5 | 100 k |
| HRRS-B-5-1M | 111.11 G | 5 | 1 M |
| HRRS-B-5-10M-5KV** | 1.1111 T | 5 | 10 M |
| HRRS-B-6-10 | 11.1111 M | 6 | 10 |
| HRRS-B-6-100 | 111111 M | 6 | 100 |
| HRRS-B-6-1K | 1.11111 G | 6 | 1 k |
| HRRS-B-6-10K | 11.1111 G | 6 | 10 k |
| HRRS-B-6-100K | 111.111 G | 6 | 100 k |
| HRRS-B-6-1M-5KV** | 1.11111 T | 6 | 1 M |
| HRRS-B-7-10 | 111.1111 M | 7 | 10 |
| HRRS-B-7-100 | 1.111111 G | 7 | 100 |
| HRRS-B-7-1K | 11.11111 G | 7 | 1 k |
| HRRS-B-7-10K | 111.1111 G | 7 | 10 k |
| HRRS-B-7-100K-5KV** | 1.111111 T | 7 | 100 k |

Single Decade Version See HARS-X data sheet (p. 16)
OPTIONS:

- RM Rack mountable case for standard 19" rack

K Kelvin type 4-terminal binding posts
RO Rear outputs

${ }_{\substack{\text { contents } \\ \text { p. } 2}}^{\text {cta }}$	Applic.	Selection	$\begin{aligned} & \text { Products } \\ & \text { pp. 12-87 } \end{aligned}$		Index	

HRRS-5kV Series

Replacement for
Biddle Megadek Series

7 Decade HRRS High Resistance Substituter

SPECIFICATIONS

Decade Resistance	Resistance per step	Accuracy Option**			Max Voltage* per step	Maximum* Voltage (V)	Temp. Coefficient $\pm \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Voltage Coefficient $\pm \mathrm{ppm} / \mathrm{V}$	Stability $\pm \mathrm{ppm} / \mathrm{year}$
100Ω	10Ω	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	2.5 V	25 V	15	0	10
$1 \mathrm{k} \Omega$	100Ω	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	8 V	80 V	5	0	10
$10 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	23 V	230 V	5	0	10
$100 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	70 V	700 V	5	0	10
$1 \mathrm{M} \Omega$	$100 \mathrm{k} \Omega$	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.1 \%$	230 V	2300 V	5	0	10
$10 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$	$\pm 0.03 \%$	$\pm 0.1 \%$	$\pm 0.5 \%$	1000 V	5000 V	15	0.2	10
$100 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$\pm 0.03 \%$	$\pm 0.1 \%$	$\pm 1 \%$	3500 V	5000 V	15	0.2	50
$1 \mathrm{G} \Omega$	$100 \mathrm{M} \Omega$	$\pm 0.1 \%$	$\pm 0.2 \%$	$\pm 1 \%$	5000 V	5000 V	25	1.5	100
$10 \mathrm{G} \Omega$	$1 \mathrm{G} \Omega$	$\pm 0.2 \%$	$\pm 0.5 \%$	$\pm 1 \%$	5000 V	5000 V	25	5	500
$100 \mathrm{G} \Omega$	$10 \mathrm{G} \Omega$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 1 \%$	5000 V	5000 V	25	5	500
$1 \mathrm{~T} \Omega$	$100 \mathrm{G} \Omega$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 3 \%$	5000 V	5000 V	50	5	500
$10 \mathrm{~T} \Omega$	$1 \mathrm{~T} \Omega$	$\pm 3 \%$	$\pm 5 \%$	$\pm 10 \%$	5000 V	5000 V	200	5	500

*(dc + ac peak)

Zero Resistance: $<3 \mathrm{~m} \Omega$ per decade at dc.
Operating Conditions: $10^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C} ;<50 \% \mathrm{RH}$.
Terminals: Two five-way binding posts on 2 special, low leakage, Kel-F insulating sockets and one metal ground post electrically connected to the case.

Dimensions: 43.2 cm W x $14.2 \mathrm{~cm} \mathrm{H} \times 13.5 \mathrm{~cm} \mathrm{D}\left(17^{\prime \prime} \times 5.6^{\prime \prime} \times 5.3^{\prime \prime}\right)$; for 3 and 4 decades. $48.2 \mathrm{~cm} W \times 22.2 \mathrm{~cm} \mathrm{H} \times 33 \mathrm{~cm} \mathrm{D}\left(19^{\prime \prime} \times 8.75^{\prime \prime} \times 13^{\prime \prime}\right)$ for 7, 8 and 9 decades. $48.2 \mathrm{~cm} \mathrm{~W} \times 30.1 \mathrm{~cm} \mathrm{H} \times 21.6 \mathrm{~cm} \mathrm{D}$ ($19^{\prime \prime} \times 12.2^{\prime \prime} \times 8.5^{\prime \prime}$) for 10 and 11 decades.

Setting of value:
Standard: 11 positions, "0"-"10"; silver contacts, high voltage switch. Binding Posts (optional): units use binding posts and shorting links in lieu of rotary switches to set resistance values.

HRRS-5KV High Resistance Substituter with binding posts; various and custom configurations are available

Single decade HRRS-5KV High Resistance Substituter with binding posts; various and custom configurations are available IET LABS, INC. in the GenRad $_{\text {Tradition }}$

| Contents |
| :---: | :---: | :---: |
| p. 2 | Applic. | Selection |
| :---: |
| pp. 4-8 |
| pp. 9-11 | | Products |
| :---: |
| pp. 12-87 | | GenRad |
| :---: |
| products |
| pp. 50-87 | | Index |
| :--- |
| p. 89 |

HRRS-5kV Series

ORDERING INFORMATION

Model*	Total Resistance (Ω)	No. of Decades	(Ω)
HRRS-B-1G-5KV	10 G	1	1 G
HRRS-B-1-10G-5KV	100 G	1	10 G
HRRS-F-1-100G-5KV	1 T	1	100 G
HRRS-B-2-1M-5KV	110 M	2	1 M
HRRS-B-2-10M-5KV	1.1 G	2	10 M
HRRS-B-2-100M-5KV	11 G	2	100 M
HRRS-B-2-1G-5KV	110 G	2	1 G
HRRS-B-2-10G-5KV	1.1 T	2	10 G
HRRS-B-2-100G-5KV	11.1 T	2	100 G
HRRS-B-3-100K-5KV	111 M	3	100 k
HRRS-B-3-1M-5KV	1.11 G	3	1 M
HRRS-B-3-10M-5KV	11.1 G	3	10 M
HRRS-B-3-100M-5KV	111 G	3	100 M
HRRS-B-3-1G-5KV	1.11 T	3	1 G
HRRS-B-3-10G-5KV	11.1 T	3	10 G
HRRS-B-4-10K-5KV	111.1 M	4	10 k
HRRS-B-4-100K-5KV	1.111 G	4	100 k
HRRS-B-4-1M-5KV	11.11 G	4	1 M
HRRS-B-4-10M-5KV	111.1 G	4	10 M
HRRS-B-4-100M-5KV	1.111 T	4	100 M
HRRS-B-4-1G-5KV	11.11 T	4	1 G
HRRS-B-5-1K-5KV	111.11 M	5	1 k
HRRS-B-5-10K-5KV	1.1111 G	5	10 k
HRRS-B-5-100K-5KV	11.111 G	5	100 k
HRRS-B-5-1M-5KV	111.11 G	5	1 M
HRRS-B-5-10M-5KV	1.1111 T	5	10 M
HRRS-B-5-100M-5KV	11.111 T	5	100 M

[^1]| Model* | Total
 Resistance
 (Ω) | No.
 of De-
 cades | Resolution |
| :--- | :---: | :---: | :---: |
| (Ω) | | | |
| HRRS-B-6-10-5KV | 11.1111 M | 6 | 10 |
| HRRS-B-6-100-5KV | 111.111 M | 6 | 100 |
| HRRS-B-6-1K-5KV | 1.11111 G | 6 | 1 k |
| HRRS-B-6-10K-5KV | 11.1111 G | 6 | 10 k |
| HRRS-B-6-100K-5KV | 111.111 G | 6 | 100 k |
| HRRS-B-6-1M-5KV | 1.11111 T | 6 | 1 M |
| HRRS-B-6-10M-5KV | 11.1111 T | 6 | 10 M |
| HRRS-B-7-10-5KV | 111.1111 M | 7 | 10 |
| HRRS-B-7-100-5KV | 1.111111 G | 7 | 100 |
| HRRS-B-7-1K-5KV | 11.11111 G | 7 | 1 k |
| HRRS-B-7-10K-5KV | 111.1111 G | 7 | 10 k |
| HRRS-B-7-100K-5KV | 1.111111 T | 7 | 100 k |
| HRRS-B-7-1M-5KV | 11.1111 T | 7 | 1 M |
| HRRS-B-8-1-5KV | 111.11111 M | 8 | 1 |
| HRRS-B-8-10-5KV | 1.1111111 G | 8 | 10 |
| HRRS-B-8-100-5KV | 11.111111 G | 8 | 100 |
| HRRS-B-8-1K-5KV | 111.11111 G | 8 | 1 K |
| HRRS-B-8-10K-5KV | 1.1111111 T | 8 | 10 K |
| HRRS-B-8-100K-5KV | 11.111111 T | 8 | 100 K |
| HRRS-B-9-0.1-5KV | 111.111111 M | 9 | 0.1 |
| HRRS-B-9-1-5KV | 1.11111111 G | 9 | 1 |
| HRRS-B-9-10-5KV | 11.1111111 G | 9 | 10 |
| HRRS-B-9-100-5KV | 111.111111 G | 9 | 100 |
| HRRS-B-9-1K-5KV(0.6T) | 1.1111111 T | 9 | 1 k |
| HRRS-B-9-1K-5KV | 1.1111111 T | 9 | 1 k |
| HRRS-B-9-10K-5KV | 11.1111111 T | 9 | 10 K |
| | | 9 | |

Single Decade Version See HARS-X data sheet (p. 16) OPTIONS:

- RM Rack mountable case for standard 19" rack
- K Kelvin type 4-terminal binding posts
- RO Rear outputs
- BP Binding posts in lieu of rotary switches
- 10kV10 kV maximum for applicable decades

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. $50-87$	Index p. 89

HPRS Series

Economical figh performance figh power resistance for all laboratory, test, and calibration needs.

- Resistance from $1 \mathrm{~m} \Omega$ to $10 \mathrm{M} \Omega$
- 1 to 9 decades
- 0.5% or 1% accuracy
- 1000 V rating, higher available
- Power of $225 \mathrm{~W} /$ decade, 250 W max. or higher
- Rack mounting available
- Special and custom confiqurations

6 Decade Benchtop High Power Resistance Substituter

SPECIFICATIONS

Resistance per step	Decade Total (Ω)	Max. * Current per decade (A)	Max. * Power per step (W)	Temperature Coefficient (ppm/ ${ }^{\circ} \mathrm{C}$)
$1 \mathrm{~m} \Omega$	0.009	6	0.036	50
$10 \mathrm{~m} \Omega$	0.09	6	0.36	50
$100 \mathrm{~m} \Omega$	0.09	6	3.6	20
1Ω	9	5	25	50
10Ω	90	1.5	25	50
100Ω	900	0.5	25	50
$1 \mathrm{k} \Omega$	9k	0.15	25^{+}	50
$10 \mathrm{k} \Omega$	90 k	$0.05{ }^{+}$	25^{+}	50
$100 \mathrm{k} \Omega$	900 k	V limit †	\checkmark limit †	20
$1 \mathrm{M} \Omega$	9M	\checkmark limit †	V limit †	10

* Subject to 250 W max. per unit.
${ }^{\dagger}$ Subject to 1000 V (dc + ac peak) max.

Accuracy:
Option C: $\pm(0.5 \%+20 \mathrm{~m} \Omega)$ after zero subtraction; SI traceable. Option F: $\pm(1.0 \%+20 \mathrm{~m} \Omega)$ after zero subtraction; SI traceable.

Zero Resistance: $<5 \mathrm{~m} \Omega$ per decade, at dc;.
Type of Resistor: Resistance wire for 0.1Ω and under;
film power resistors for 1Ω to $100 \mathrm{k} \Omega$ steps; low inductance wirewound resistors for $1 \mathrm{M} \Omega$ steps.

Terminals: Two five-way binding posts and one ground post electrically connected to case.

Model	Dimensions	Weight
6 decades	$\begin{gathered} 43.9 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(17.3^{\prime \prime} \times 3.5^{\prime \prime} \times 4\right. \text { ") } \end{gathered}$	$\begin{gathered} 2.2 \mathrm{~kg} \\ (4.8 \mathrm{lb}) \end{gathered}$
7 decades		$\begin{gathered} 2.4 \mathrm{~kg} \\ (5.3 \mathrm{lb}) \end{gathered}$
8 decades		$\begin{gathered} 2.6 \mathrm{~kg} \\ (5.7 \mathrm{lb}) \end{gathered}$
9 decades	$\begin{gathered} 48.3 \mathrm{~cm} \mathrm{~W} \times 17.8 \mathrm{~cm} \mathrm{H} \times 19.7 \mathrm{~cm} \mathrm{D} \\ \left(19.0 \times 7.0 \times 7.8^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 5.1 \mathrm{~kg} \\ (11.2 \mathrm{lb}) \end{gathered}$

ORDERING INFORMATION

Model*	Total Resistance (Ω)	No. of	Resolution
Decades			

Model* $(1 \%$ Accuracy)	Total Resistance (Ω)	No. of Decades	(Ω)
HPRS-F-5-1	100 k	5	1
HPRS-F-5-10	1 M	5	10
HPRS-F-5-100	10 M	5	100
HPRS-F-6-0.001	1 k	6	0.001
HPRS-F-6-0.01	10 k	6	0.01
HPRS-F-6-0.1	100 k	6	0.1
HPRS-F-6-1(HPRS-150)	1 M	6	1
HPRS-F-6-10	10 M	6	10
HPRS-F-7-0.001	10 k	7	0.001
HPRS-F-7-0.01	100 k	7	0.01
HPRS-F-7-0.1(HPRS-200)	1 M	7	0.1
HPRS-F-7-1	10 M	7	1
HPRS-F-8-0.001	100 k	8	0.001
HPR-F-8-0.01	1 M	8	0.01
HPRS-F-8-0.1(HPRS-200W)	10 M	8	0.1
HPRS-F-9-0.001	1 M	9	0.001
HPRS-F-9-0.01	10 M	9	0.01

OPTIONS

- RM Rack mountable case for standard 19" rack

Programmable Version See PRS data sheet (p. 17) IET LABS, INC. inthe GenRad

PRS • PCS • PLS • PRTD • Series p. 1 ori

Broad range of laboratory grade decade substituters for applic ations requiring a cost
effective programmable-impedance unit controlled manually and by a computer.

RESISTANCE • RTD • CAPACITANCE•INDUCTANCE

- Multiple control mode:

IEEE-488

- Special RTD and custom configurations
- High power versions

Dual PZS Resistance and Capacitance Substituter

- Programmable "open circuit" and "short circuit" states optional

Model PRS-201 Resistance Substituter

Choice of Performance:
PRS-200 Series - economical 1\% accuracy PRS-201 Series - laboratory 0.1\% accuracy PRS-202 Series - high accuracy to 0.01\% PRTD Series - programmable RTD simulation.

Package Configuration: Convenient standard 19" rack mounting or more portable benchtop versions are available. Both single and dual units are available.

Low thermal emf: Specially selected relays along with tellurium copper binding posts insure minimum thermal emf drift.

High Power: Power up to 100's of watts and high current options are available.

Combinations: Dual or combination resistance-capacitance-inductance models may be configured.
Special Requirements: High voltage nonstandard values, ultra low tempco or special programming needs can be accommodated.

Rear Outputs: Single or dual front and rear outputs are available with option RO.
Wide choice of impedance ranges: resistance, capacitance and inductance of up to 10 decades may be specified. Resistance may range from $1 \mathrm{~m} \Omega$ to $100 \mathrm{M} \Omega$.

PRTD: Low resistance versions with a fixed minimum resistance setting (4Ω or specified by customer) are suitable for RTD (Resistance Temperature Detector) simulations. This design virtually eliminates the effect of zero resistance and relay contact resistance, providing the specified absolute accuracy over its entire range.

High Power Options: Power dissipation requirements of up to tens of Watts can be accommodated.

Short-Circuit (SC) and Open-Circuit (OC) Options: Optional short-circuit and open-circuit modes of operation. These states are controlled only in the REMOTE programming mode.

OC or Open Circuit operation gives the user an open circuit immediately in series with the HI binding post. SC or Short Circuit operation gives the user a short circuit across the HI and the LO binding posts The short circuit impedance is very small, $<20 \mathrm{~m} \Omega$ or as low as $5 \mathrm{~m} \Omega$. This is lower than the regular zero resistance setting. In both these cases, the underlying resistance setting is unaffected and may still be controlled.

Programmable Resistance Temperature Detector (PRTD) Substituter

Digital Display

D-Option: Shows the commanded value - either thumbwheel or remote setting on a matching LED display above the thumbwheel switches. This is useful for confirming or monitoring the selected command value, remote or local. This option requires the Rack Mount RM option.

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	Index p. 89

REMOTE CONTROL AND PROGRAMMING

Control Options:
Thumbwheel: Standard feature on all models.
BCD: (Binary Coded Decimal): Use external digital I/O lines to set decade values individually. Requires 4 TTL lines per decade. The user provides his own control circuitry

IEEE.1: Our original computer interface which supports the IEEE488.1 or IEEE-1978 protocol is still available to allow you to maintain compatibility with your legacy hardware / software investment. This may also be a more economical solution for your control needs

IEEE: This is the most popular, worldwide interface standard for test and measurement equipment. With this option, the PRS is compliant with IEEE-488.2 and SCPI 1994.0. Features *IDN and cal date query, allowing you to improve your instrument and calibration tracking capabilities. GPIB addressing is controlled via DIP switches or commands on the GPIB bus.

RS232: This interface conforms to EIA-STD-RS-530; with a 25 pin DTE interface. Choose from factory configurable RS232 or RS422/RS485 differential modes.

The PRS is a standard DTE device in RS232 mode. Typical connection to a controlling computer is made via a null-modem cable. This is the default mode if not specified.

Specify RS422/485 mode when the PRS is in a remote location or when communications port capacity is at a premium. The RS422/485 specification uses differential signalling to increase transmission distances and to reduce communications errors in noisy environments. When in 485 mode, the PRS is a listen-only device and configurable to addresses 0-15. The internal 422/485 mode eliminates the need for external signal adapters on the PRS.

When equipped with any remote control functionality, the PRS front panel switch determines if REMOTE mode is enabled. Regardless of remote control type, setting the front panel switch to the LOCAL position always disables the remote control "set" value. Use of the IEEE GTL (go-to-local) command message returns the PRS to LOCAL mode and the PRS output value to the thumbwheel setting. GTL is an IEEE specific function and not applicable to Serial or BCD equipped units.

Supported commands include: *IDN?, *CLS, *ESE, *ESE?, *ESR?, *IDN?, *OPC, *OPC?, *PSC, *PSC?, *RCL, *RST, *SAV, *SRE, *SRE?, *STB, *TRG, *TST? and *WAI.

When using the PRS in an environment where traceability is required, test software can query the '*IDN' and 'CALibrate:DATe' registers at the beginning of each test sequence to record equipment serial numbers and check the calibration date against the current date.

A typical test sequence might include:
Init the instrument \quad *RST
retrieve S / N \& caldate*IDN?;CAL:DATE?
Loop Begin
$\begin{array}{ll}\text { set PRS value } & \text { SOURCe:DATA 0000500000000 } \\ \text { check for errors } & \text { SYST:ERR? or *STB? } \\ \text { make test meas.... } & \end{array}$

Loop End

Return to known state SOURCe:DATA 00000000000
Send Go-To-Local cmd

NATIONAL INSTRUMENTS SOFTWARE AND HARDWARE TOOLS

GPIB instruments are the most popular, worldwide standard for test and measurement systems. To close the loop for your remote control system needs, IET Labs can supply National Instruments hardware and software GPIB solutions for almost every desktop, laptop, industrial PC, workstation, and interface bus including PCI , Compact $\mathrm{PCI}, \mathrm{PCMCIA}, ~ U S B$, serial, 1394 and Ethernet.

LabVIEW instrument drivers are available for units equipped with GPIB or RS232C options. These drivers are written based on the National Instruments instrument template, using VISA handles and standard initialize, config and query functions.

Contact us if you need help creating more complex test and/or measurement solutions based on interconnecting multiple/different IET Labs instruments. IET LABS, INC.

$\begin{aligned} & \text { Contents } \\ & \text { p. } 2 \end{aligned}$	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products p. 50-8	Index p. 89

PRS • PCS • PLS • PRTD • Series pi. or 4

The remote output value is set by sending a 'SOURCe:DATA' command followed by a string that represents the digits as they would be selected using the thumbwheels. Leading and trailing zeros are required to set each decade properly; the decimal point is not used.

For example; the PRS-202 has a least significant digit value of 0.01 Ohms and a remote logic maximum of 12 command decades. To set a value of $500,000.45$ Ohms, the command string would be:

SOURCe:DATA 000050000045

The PRS-201 has a least significant digit value of 0.1 Ohms and a remote logic maximum of 10 command decades. To set a value of 2,500.8 Ohms, the command string would be:

SOURCe:DATA 0000025008

Request the LabVIEW drivers to quickly integrate the PRS into your test environment. These drivers are built based on the NI driver template, and include a virtual front panel application. The LabVIEW runtime engine is included with the drivers for simple remote control operation.

SPECIFICATIONS

Accuracy: The accuracy, indicated in the chart below, applies after subtraction of the "zero setting" residual impedance.
Accuracy (PRTD): Absolute accuracy, indicated below, applies without requiring subtraction of "zero setting" residual impedance.
Min. Setting (PRTD): 4Ω or customer specified.
Thermal emf: $<15 \mu \mathrm{~V} ;<10 \mu \mathrm{~V}$, typical.
Terminals:
Four low emf gold plated tellurium copper 5 -way binding posts are used for HI and LO terminal pairs for CURRENT and SENSE. GND binding post is connected to the case, to the chassis ground and to the earth ground. Rear outputs are available with RO option.

Switching time: $<4 \mathrm{~ms}$ per change; $<7 \mathrm{~ms}$ for $\leq 0.05 \%$ units.
Power Requirements: 105-125 V or 210-250 V (internally switchable for PRS 202 series) $50-60 \mathrm{~Hz}$; 10 W nominal; battery pack available; see BP-511 Series.

Remote Control Input Options:
IEEE.1: Original GPIB interface; standard 24 pin connector conforms to IEEE-488.1-1978; configurable address from 0 to 30
IEEE: GPIB standard 24 pin connector, conforms to IEEE-488.2; SCPI 1994.0 command set; Hardware or software configurable addressing range of 0 to 30 . Default IEEE option if ". 1 " or " 2 " choice not specifically noted.
RS232: NEW - 25 pin male DTE interface conforms to EIA-STD-RS530; SCPI 1994.0 command set; data rates from 300 to 115200 bps.
$B C D$: Parallel, CMOS positive true logic
Dimensions: Bench model: $22 \mathrm{~cm} \mathrm{~W} \times 12 \mathrm{~cm} \mathrm{H} \times 24 \mathrm{~cm}$ D ($8.5^{\prime \prime} \times 4.44^{\prime \prime}$ x 9.25") Rack model: Panel: 48.3 cm W x 13.2 cm H (19" x 5.2^{2}); behind panel: 42.7 cm W $\times 12.4 \mathrm{~cm} \mathrm{H} \times 31.5 \mathrm{~cm}$ D ($16.8^{\prime \prime} \times 5.2^{\prime \prime} \times 12.4$ "); in front of panel: $3.8 \mathrm{~cm}\left(1.55^{\prime}\right)$.
Weight: Bench model: $2.0 \mathrm{~kg}(4.5 \mathrm{lb})$; Rack model: $4.5 \mathrm{~kg}(10 \mathrm{lb}) ;$ Dual rack mount model: $6.4 \mathrm{~kg}(14 \mathrm{lb})$; weight specifications are nominal.
Interface: IEEE-488-1978, or parallel BCD interface; front panel switch selects REMOTE (digital interface) or LOCAL (front panel thumbwheel) operation. See pp. 46-49 for IEEE-488 interface software and hardware, check for 2 intervals.

Model	PRS-200	PRS-201	PRS-200W	PRS-201W	PRS-202	PRS-202W	PRTD	PCS-300	PCS-301	PLS-400	PLS400A
Type	Resistance	Precision Resistance	Wide Range Resistance	Wide Range Precision Resistance	High Precision Resistance	Wide Range High Precision Resistance	Precision Absolute Value Resistance	Precision Capacitance	Wide Range Capacitance	Range	Inductance
Accuracy	$1 \%+70 \mathrm{~m} \Omega$	$0.1 \%+30 \mathrm{~m} \Omega$	$1 \%+70 \mathrm{~m} \Omega$	$0.1 \%+30 \mathrm{~m} \Omega$	0.01\% to 0	$\%+15 \mathrm{~m} \Omega$. $02-.05 \%+10 \mathrm{~m} \Omega$	$4 \%+5 \mathrm{pF}$	$1 \%+3 \mathrm{pF}$		2\%
Decades		7			7	9	6 or more			4	3
Range	0-9,999	999Ω	0-99,99	,999.9 Ω	0-9,999,999 Ω	0-99,999,999.9 Ω	4-10,003.99 Ω	0 -	999 F	$0-9.999 \mathrm{H}$	0.999 mH
Resolution	1	Ω			1Ω	0.1Ω	0.01 or 0.001Ω			1 mH	1 mH
Type of Components	Resistance wire for 0.1Ω steps and under; metal film for 1Ω steps and over.				Resistance wire for 0.1Ω steps and under; wirewound, sealed non-inductive resistors for 1Ω steps and over.			$\begin{aligned} & 100-900 \mathrm{pF}: \mathrm{Mi} \\ & 0.001-0.009 \mu \mathrm{~F} \\ & 0.01-0.9 \mu \mathrm{~F}: \mathrm{P} \\ & 1-9 \mu \mathrm{~F}: \text { Polyes } \\ & 10-90 \mu \mathrm{~F}: \text { Pola } \end{aligned}$	Polystyrene ycarbonate zed tantalum	Toroidal inductorsSee inductanceSubstituters (page 9)for specifications	
Max. Load*	0.5 A, 200 V (dc + ac peak), 0.2 W/step, 2 W unit, whichever applies first.*				$3 \mathrm{~A}, 200 \mathrm{~V}$ (dc + ac peak), 0.5 W/step, 4.5W/unit, whichever applies first."			100 V (20 V ff	10-100 $\mu \mathrm{F}$)	See page 12	
Residual Impedance	$\begin{aligned} & <450 \mathrm{~m} \Omega \\ & \text { See page } 12 \end{aligned}$		<600 m		$<100 \mathrm{~m} \Omega$	$\begin{gathered} <140 \mathrm{~m} \Omega \\ \text { typically }<100 \mathrm{~m} \Omega \end{gathered}$	Absolute Value	7 pF, typical; higher w/ Rear Output			

*These specifications are dynamic switching limits. The maximum voltage, power, or current which may be applied at any particular resistance setting may be higher as long as the setting is unchanged, or the unit is switched dry.

| Contents |
| :---: | :---: | :---: |
| p. 2 | | Applic. |
| :---: |
| pp. 4-8 | | Selection |
| :---: |
| pp. 9-11 | | Products |
| :---: |
| pp. 12-87 | | GenRad |
| :---: |
| products |
| pp. 50-87 | | Index |
| :---: |
| p. 89 |

PRS • PCS • PLS • PRTD • Series

ORDERING INFORMATION

STANDARD MODELS

PRS-200 Programmable Resistance Substituter
PRS-201 Programmable Precision Resistance Substituter
PRS-200W Programmable Wide Range Resistance Substituter
PRS-201W Programmable Wide Range Precision Resistance Sub
PRS-202
PRS-202W
Sub
PCS-300
PCS-301
PLS-400
PLS-400A
PRTD Models

INTERFACE OPTIONS
-IEEE. 1 Option IEEE-488.1 Interface
-IEEE Option IEEE-488.2 Interface
-RS232 Option
-BCD Option

Serial interface
BCD Interface

National Instruments/LabVIEW Related
PZS-LV61 PZS Series LabVIEW 6.1 driver

CONTROLLER OPTIONS

NI-778032-01	GPIB controller for PCI for Windows 2000/XP
NI-777073-01	GPIB controller for PCI for Windows NT
NI-777158-01	GPIB controller for PCI for Windows Me/9x
NI-778034-02	GPIB controller for PCMCIA for Windows 2000/XP, with 2 m GPIB cable
NI-777332-02	GPIB controller for PCMCIA for Windows NT, with 2 m GPIB cable
NI-777332-02	GPIB controller for PCMCIA for Windows $\mathrm{Me} / 9 \mathrm{x}$, with 2 m GPIB cable
NI-778416-01	GPIB-USB-B, NI-488.2 for Windows 2000/XP/Me/ 98(English\&Japan)
NI-777641-02	PCI-485/2, Enhanced COM Driver for Windows 2000/NT/9x, 2 Ports (use with RS232 option)
NI-777387-01	PCI-DIO-96 Digital I/O Board and NI-DAQ for Win 2000/NT/9x/MAC (use with BCD option)

For other computers or Operating Systems Consult IET
LabVIEW Software Systems Consult National Instruments
GPIB CABLES
CBL-488-1 1 meter IEEE-488 cable
CBL-488-2 2 meter IEEE-488 cable
CBL-488-4 4 meter IEEE-488 cable
CBL-488-X Custom cables any length

OPTIONAL MODELS

In order to satisfy any unique requirements for programmable substituters, generate a part number from the table below.

(i.e.: $0-9,999.9 \Omega, 1 \%, 0.1 \Omega$ steps, rack mounted

PRS with IEEE-488.1 control, rear outputs, short circuit operation, 220 V AC operating voltage and digital display)
$\left.\left.\left.\left.\begin{array}{c}\text { Contents } \\ \text { p. } 2\end{array}\right] \begin{array}{c}\text { Applic. } \\ \text { pp. 4-8 }\end{array} \begin{array}{c}\text { Selection } \\ \text { pp. 9-11 }\end{array}\right] \begin{array}{c}\text { Products } \\ \text { pp. 12-87 }\end{array} \begin{array}{c}\text { GenRad } \\ \text { products } \\ \text { pp. } 50-87\end{array}\right] \begin{array}{c}\text { Index } \\ \text { p. } 89\end{array}\right]$ Standard Resistance
SRL Series

- No oil bath required
- Very stable - 2 ppm/yr, typical
- Extremely low TC: <2 ppm total for $18-28^{\circ} \mathrm{C}$ range
- Optional values \& combination units
- Very wide rang-1 $\mathrm{m} \Omega$ to $10 \mathrm{~T} \Omega$
- Optional transit case Extremely high accuracy \& stability, sealed, on site resistance standard requiring no oil or temperature bath.

SPECIFICATIONS

Model*	Nominal Value	Adjustment Accuracy ($\pm \mathrm{ppm}$)	Calibration Uncertainty ($\pm \mathrm{ppm}$)			Max Resistance Change from $23^{\circ} \mathrm{C}$	Max Current	Max Voltage (V)	Current Limit for Accuracy \dagger (mA)	
SRL-0.001	$1 \mathrm{~m} \Omega$	50	50	50	-	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	10 A	0.01	-	1Ω
SRL-0.0019	$1.9 \mathrm{~m} \Omega$	50	50	50	-	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	10 A	0.02	-	
SRL-0.002	$2 \mathrm{~m} \Omega$	50	50	50	-	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	10 A	0.02	-	
SRL-0.01	$10 \mathrm{~m} \Omega$	50	20	50	-	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	10 A	0.1	-	
SRL-0.019	$19 \mathrm{~m} \Omega$	50	20	50	-	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	10 A	0.2	-	28 c
SRL-0.1	$100 \mathrm{~m} \Omega$	10	10	50	-	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	3 A	0.3	-	Resince cmor
SRL-0.19	$190 \mathrm{~m} \Omega$	10	10	50	-	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	3 A	0.6	-	
SRL-1	1Ω	2	1	8	2	3 ppm tot	500 mA	0.5	256	
SRL-1.9	1.9Ω	2	1	8	2	3 ppm tot	200 mA	0.38	186	
SRL-10	10Ω	2	1	8	2	3 ppm tot	100 mA	1	63	
SRL-19	19Ω	2	1	8	2	3 ppm tot	74 mA	1.4	45	SRL-1 High Accuracy Resistance
SRL-25	25Ω	2	1	8	2	3 ppm tot	63 mA	1.6	40	Standard Requiring No Temperature
SRL-30	30Ω	2	1	8	2	3 ppm tot	57 mA	1.7	36.5	Bath
SRL-50	50Ω	2	1	8	2	3 ppm tot	44 mA	2.2	28	
SRL-100	100Ω	2	1	6	2	3 ppm tot	32 mA	3.2	20	Combination units in single
SRL-190	190Ω	2	1	6	2	3 ppm tot	24 mA	4.5	14.5	housing available
SRL-350	350Ω	2	1	6	2	3 ppm tot	17 mA	5.95	10.7	
SRL-400	400Ω	2	1	6	2	3 ppm tot	15.8 mA	6.3	10	Direct plug-in units for DMM
SRL-1K	$1 \mathrm{k} \Omega$	2	1	6	1	3 ppm tot	10 mA	10	6	alibration availabl
SRL-1.9K	$1.9 \mathrm{k} \Omega$	2	1	6	1	2 ppm tot	7.4 mA	14	4.6	
SRL-10K	$10 \mathrm{k} \Omega$	2	1	4	1	1.5 ppm tot	3 mA	30	2	Optional Transit Case
SRL-19K	$19 \mathrm{k} \Omega$	2	1	4	1	2 ppm tot	2.3 mA	28	1.4	
SRL-100K	$100 \mathrm{k} \Omega$	2	1	6	1.5	2 ppm tot	1 mA	100	0.63	
SRL-190K	$190 \mathrm{k} \Omega$	2	1	8	2	2 ppm tot	0.5 mA	100	0.45	
SRL-1M	$1 \mathrm{M} \Omega$	2	2	8	2	2 ppm tot	0.1 mA	100	-	
SRL-1.9M	$1.9 \mathrm{M} \Omega$	2	2	9	2	3 ppm tot	0.053 mA	100	-	
SRL-10M	$10 \mathrm{M} \Omega$	2	2	9	2	3 ppm tot	0.030 mA	300	-	
SRL-19M	$19 \mathrm{M} \Omega$	2	9	10	2	4 ppm tot	0.016 mA	300	-	
SRL-100M	$100 \mathrm{M} \Omega$	10	9	20	-	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$	1000	-	(
SRL-1G	$1 \mathrm{G} \Omega$	0.1\%	100	200	100	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	5000	-	cos
SRL-10G	$10 \mathrm{G} \Omega$	0.1\%	200	500	300	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	5000	-	aje an
SRL-100G	$100 \mathrm{G} \Omega$	0.2\%	1000	500	300	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	5000	-	r
SRL-1T	$1 \mathrm{~T} \Omega$	0.5\%	0.25\%	500	300	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	5000	-	
SRL-1.9T	$1.9 \mathrm{~T} \Omega$	0.7\%	0.7\%	1000	500	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	5000	-	
SRL-10T	$10 \mathrm{~T} \Omega$	0.7\%	0.7\%	2000	1000	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	5000	-	

† Add 1 ppm error when test current value exceeds Current Limit.

Retrace: Permanent shift in resistance value is $<2 \mathrm{ppm}$ for $23^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}$ cycle, and $23^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}$ cycle; applies for 1Ω to $19 \mathrm{M} \Omega$.
Calibration Report: Initial SI traceable calibration data provided in $0.5^{\circ} \mathrm{C}$ increments for temperature range of $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$.
Terminals: Four 5-way binding posts for 4-terminal measurement for $190 \mathrm{k} \Omega$ and under; two binding posts for $1 \mathrm{M} \Omega$ and over. The binding posts are constructed of tellurium copper for low thermal emf and low resistance. A case ground terminal is also provided. Guard terminal for $100 \mathrm{M} \Omega$ and over. DMM direct input compatibles available; bnc, Triax, and custom connectors available.

Calibration Conditions: Four-wire Kelvin measurements, low power, at $23^{\circ} \mathrm{C}$; two wire for $1 \mathrm{M} \Omega$ and over. Traceable to SI.
Temperature Range: $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$.
Storage Temperature: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Dimensions: $8.6 \mathrm{~cm} \mathrm{H} \times 10.5 \mathrm{~cm}$ W x $12.7 \mathrm{~cm} \mathrm{D} \mathrm{(3.4"} \mathrm{x} \mathrm{4.15"} \mathrm{x} \mathrm{5")}$.
Weight: 0.73 kg (1.6 lb).
Transit Case: Optional Model SRC-100 lightweight transit case with handle, suitable for transporting and storing two units. The case provides mechanical protection and insulation from temperature changes during transportation or shipping.

IET LABS, INC. in the

GenRad Tradition

Economicalfigh performance resistance standards.

- Very stable - up to $10 \mathrm{ppm} / \mathrm{yr}$
- Excellent TC - as low as $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Rugged
- Wide range of values - $1 \mathrm{~m} \Omega$ to $10 \mathrm{~T} \Omega$
- Optional values available
- Optional transit case
- SRX series available at 5000 V

SRX/SRA SERIES

Designed for use as a reference or working standard in industrial, research, and educational laboratories.

SRC SERIES

Economical high resistance, high voltage standards for applications requiring values up to $10 \mathrm{~T} \Omega$
SRC Maximum Voltage: 5000 V .

SRA Series Resistance Standard

SPECIFICATIONS

Model	Nominal Value	Adjustment to Nominal (ppm)		Calibration Uncertainty (ppm)	Stability 1 year (ppm)		Tempco (ppm $/{ }^{\circ} \mathrm{C}$)		Power Coef. (ppm/mW)		Max. Power (W)		Max. Voltage (V)		Max. Current	
SRX-SRA	(Ω)	SRX	SRA		SRX	SRA										
0.001	0.001	200	500	200	50	100	20	20	0.1	0.1	0.2	0.2	0.015	0.015	14 A	14 A
0.0019	0.0019	200	500	200	50	100	20	20	0.1	0.1	0.38	0.38	0.03	0.03	14 A	14 A
0.002	0.002	200	500	200	50	100	20	20	0.1	0.1	0.2	0.2	0.02	0.02	10 A	10 A
0.01	0.01	200	500	100	50	100	20	20	0.1	0.1	2	2	0.15	0.15	14 A	14 A
0.019	0.019	200	500	100	50	100	20	20	0.1	0.1	3.8	3.8	0.3	0.3	14 A	14 A
0.1	0.1	200	500	20	50	100	20	20	0.1	0.1	1	1	0.3	0.3	3 A	3 A
0.19	0.19	200	500	20	50	100	20	20	0.1	0.1	1.7	1.7	0.6	0.6	3 A	3 A
1	1	20	100	10	20	50	10	20	0.5	1	0.25	1	0.5	1	0.5 A	1 A
1.9	1.9	20	100	10	20	50	10	20	0.5	1	0.25	1	0.7	1.4	0.36 A	0.73 A
10	10	10	30	5	10	18	3	5	0.15	0.25	0.1	1	1	3	0.1 A	0.3 A
19	19	10	30	5	10	18	3	5	0.15	0.25	0.1	1	1.4	4.4	70 mA	23 mA
50	50	10	20	5	10	15	1	3	0.05	0.15	0.1	1	2.3	7	45 mA	140 mA
100	100	10	20	5	10	15	1	3	0.05	0.15	0.1	1	3	10	30 mA	0.1 A
190	190	10	20	5	10	15	1	3	0.05	0.15	0.1	1	4.4	14	23 mA	70 mA
1K	1 k	10	20	2	10	15	1	3	0.05	0.15	0.1	1	10	30	10 mA	30 mA
1.9K	1.9 k	10	20	2	10	15	1	3	0.05	0.15	0.1	1	14	42	7 mA	22 mA
10K	10 k	10	20	2	10	15	1	3	0.05	0.15	0.1	1	30	100	3 mA	10 mA
19K	19 k	10	20	2	10	15	1	3	0.05	0.15	0.1	1	43	140	2.2 mA	7 mA
100K	100 k	10	20	2	10	15	1	3	0.05	0.15	0.1	1	100	300	1 mA	3 mA
190K	190 k	10	20	2	10	15	1	3	0.05	0.15	0.1	1	140	440	0.7 mA	2.2 mA
1M	1 M	20	50	5	15	20	3	10	0.15	0.5	0.1	1	316	1000	0.3 mA	1 mA
1.9M	1.9 M	20	50	5	15	20	3	10	0.15	0.5	0.1	0.5	440	1000	0.23 mA	0.5 mA
10M	10 M	20	50	10	20	50	5	10	0.25	0.5	0.1	0.1	2000	2000	0.1 mA	0.1 mA
19M	19 M	20	50	10	20	50	5	15	0.7	0.7	0.05	0.05	5000	5000	$50 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$
100M	100 M	50	100	15	20	100	5	25	1.2	1.2	0.01	0.01	5000	5000	$10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$

SRC-190M	190 M	0.1%	30	500	25
SRC-1G	1 G	0.5%	100	500	50
SRC-1.9G	1.9 G	0.5%	100	500	50
SRC-10G	10 G	0.5%	200	500	50
SRC-19G	19 G	0.5%	500	500	50
SRC-100G	100 G	0.5%	900	500	50
SRC-190G	190 G	1%	900	500	50
SRC-1T	1 T	2%	2500	500	100
SRC-1.9T	1.9 T	2%	2500	1000	200

SRC Series Maximum Voltage: 5000 V .
Combination units in single housing available.

GENERAL
Test Conditions: Four-terminal Kelvin measurements, low power, at $23^{\circ} \mathrm{C}$; two-terminal for $1 \mathrm{M} \Omega$ and over. Initial calibration data traceable to NIST is provided.
Terminals: SRX: Four 5 -way binding posts for 4 -terminal measurement for $190 \mathrm{k} \Omega$ and under; two binding posts for $1 \mathrm{M} \Omega$ and over. The binding posts are constructed of tellurium copper for low thermal emf and low resistance. A case ground terminal is also provided. Triax and onc terminals are also available.
SRC: Additonal GUARD terminal is provided
Dimensions: $8.6 \mathrm{~cm} \mathrm{H} \times 10.5 \mathrm{~cm}$ W x $12.7 \mathrm{~cm} \mathrm{D}\left(3.4^{\prime \prime} \times 4.15^{\prime \prime} \times 5\right.$ " $)$. Transit Case: Optional Model SRC-100 lightweight transit case with handle, suitable for transporting and storing two units. The case provides mechanical protection and insulation from temperature changes during transportation or shipping.
Operating Temperature Range: 15 to $30^{\circ} \mathrm{C}$.

VRS-100•Series

or otfer instruments; 9 or 10 values up to $10 \mathcal{T} \Omega$ with special Kel-F is olation.

Aneconomicalset of precision figh resistance standards designed for testing megofmme ters

Model VRS-100 High Resistance Standards, binding post version

- Two user versions available:
binding posts
rotary switch

Model VRS-100 High Resistance Standards, rotary switch version, with guard and case ground

SPECIFICATIONS

Nominal value Ω	Max Voltage V	Adjustment Accuracy	Temperature coefficient $\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	Voltage coefficient $(\mathrm{ppm} / \mathrm{V})$	Accuracy for full voltage
1 k	50	20 ppm	3	-	same
10 k	150	20 ppm	3	-	same
100 k	500	20 ppm	3	-	same
1 M	1250	20 ppm	5	-	same
10 M	5000	50 ppm	50	0.2	120 ppm
100 M	5000	300 ppm	50	1.2	0.7%
1 G	5000	0.5%	50	1.2	0.7%
10 G	5000	0.5%	50	2	1%
100 G	5000	1%	200	5	3%
1 T	5000	$2 \%^{*}$	300	5	5%
10 T	5000	$5 \%^{*}$	300	5	10%
* 1 Ω 2nd					

Dimensions: 43.2 cm W $\times 14.2 \mathrm{~cm} \mathrm{H} \times 13.5 \mathrm{~cm} \mathrm{D}$ (17 " x 5.6 " x 5.3 ").

Weight: 3.6 kg (8 lb).

SI traceable

ORDERING INFORMATION

VRS-100-9-1 K-BP 9 Values, $1 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ Substituter, with binding posts $10 \mathrm{~T} \Omega$ values may be included in any model - optional
VRS-100-10-1K-BP $\quad 10$ Values, $1 \mathrm{k} \Omega$ to $1 \mathrm{~T} \Omega$ Substituter, with binding posts Optional combinations are available
VRS-100-9-1K-ROT9 Values, $1 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ Substituter, with rotary switch
VRS-100-10-1K-ROT $\quad 10$ Values, $1 \mathrm{k} \Omega$ to $1 \mathrm{~T} \Omega$ Substituter, with rotary switch
Contents

p. 2 Applic. \begin{tabular}{c}
Selection

pp. $4-8$

pp. 9-11

Products

pp. 12-87

GenRad

products

pp. $50-87$

Index

p. 89
\end{tabular} RTDSimulators

RTD Series

- 50 ppm absolute accuracy
- $1 \mathrm{~m} \Omega$ resolution
- No"zero" resistance; direct setting
- Highest performance RTD simulator available
- Highest accuracy, highest stability, lowest TC
- wide range -10Ω to 1111.110Ω
- Virtually independent of contact resistance variation
- Ideal for DIN PT-100, PT-100 ANSI, PT-50 and $\mathrm{NI}-120$ systems

NI-120 systems		ANSI,			axions
Model Specifications	RTD-Z-6-. 001	RTD-X-6-. 001	RTD-Z-6-. 01	RTD-X-6-. 01	RTD-250
Minimum resistance (Ω)	10.000	10.000	10.00	10.00	20.00
Maximum resistance (Ω)	1,111.110	1,111.110	11,111.10	11,111.10	1,121.10
Resolution (mS) 1	1	10	10	10	
Number of decades 6	6	6	6	5	
Absolute accuracy (ppm)	50	100	50	100	200
Tempco max. (ppm/ ${ }^{\circ} \mathrm{C}$)	5	5	5	5	5
Tempco typical (ppm/ ${ }^{\circ} \mathrm{C}$)	3	3	3	3	3
Stability (ppm/24hrs)	2	2	2	2	2
Stability (ppm/year) 10	10	10	10	10	
Dimensions $\quad \mathrm{W} \mathrm{cm}$ (in)	43.9(17.3)	43.9(17.3)	43.9(17.3)	43.9(17.3)	30.9(12.2)
$\mathrm{H} \mathrm{cm} \mathrm{(in)}$	8.9(3.5)	8.9(3.5)	8.9(3.5)	8.9(3.5)	8.9(3.5)
D cm (in)	10.2(4)	10.2(4)	10.2(4)	10.2(4)	10.2(4)

* Absolute accuracy is independent of "zero" and contact resistance

Maximum power for rated accuracy:
100 mW or 100 mA for 10.000 to 10.999Ω;
100 mW per step for the highest decade in use for 11Ω and over. Maximum current: 200 mA
Breakdown voltage: 1000 Vrms
Operating Temperature: -55 to $+75^{\circ} \mathrm{C}$
Switch life, typical: >100,000 operations

For programmable versions, see IET's PRTD
Series, p. 23.

RTD-Z RTD-X Series

Higfi performance, low temperature coefficient, figf stability, $\mathcal{R I} \mathcal{D}$ simulator.
The RTD Series is ideal where applications of Resistance Temperature Detector (RTD) simulation require exact low value resistance without "zero" and contact resistance effects. The RTD-Z-$6-.001$ exhibits a resistance range of 10 Ω to $1,111.110 \Omega, 1 \mathrm{~m} \Omega$ lowest decade resolution, 50 ppm absolute accuracy. The RTD-Z-6-. 01 has a $10 \mathrm{~m} \Omega$ resolution.

If this simulator is substituted for any RTD, the rest of the system may be calibrated or examined. Special designs virtually eliminate zero resistance and switch contact variations, providing the specified absolute accuracy over the entire range.

RTD-250 Series

Economical accurate compact
RID simulator. Newhigf
stability design
The RTD-250 is a more economical version for less exacting requirements. The RTD250 exhibits a resistance range of 20Ω to $1,121.110 \Omega, 1 \mathrm{~m} \Omega$ lowest decade resolution, 50 ppm absolute accuracy.

ORDERING INFORMATION

RTD-Z-6-. 001 High Accuracy RTD Simulator, 1,111 Ω, $1 \mathrm{~m} \Omega$ resolution, 50 ppm accuracy
RTD-X-6-. 001 High Accuracy RTD Simulator, 1,111 Ω, $1 \mathrm{~m} \Omega$ resolution, 100 ppm accuracy RTD-Z-6-. 01 High Accuracy RTD Simulator, $11,111 \Omega$, $10 \mathrm{~m} \Omega$ resolution, 50 ppm accuracy

RTD-X-6-. 01
RTD-250

High Accuracy RTD Simulator, 11,111 Ω,
$10 \mathrm{~m} \Omega$ resolution, 100 ppm accuracy
RTD Simulator, 1,121 Ω,
$10 \mathrm{~m} \Omega$ resolution, 0.02% accuracy

I ET

Higfi-stability, cost-effective capacitance standards with low temperature coefficient, low losses and a wide range of values.

- Wide range of values -1 pF to $2000 \mu \mathrm{~F}$
- Mechanically stabilized capacitors
- <100 ppm/yr stability
- Excellent TC - as low as $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Low loss - D as low as 0.0002

SCA SERIES

ModelSCA-	Adjustment to Nominal	$\begin{gathered} \mathrm{TC} \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Calibration Accuracy (\%)	Test Conditions			Dissipation Factor (typical)	Maximum Voltage* (V)
				Frequency	Capacitor Model	No. of Terminals		
1 pF	$\pm 0.1 \mathrm{pF}$	20	. 01	1 kHz	Series	3	. 002	500
1.9 pF	$\pm 0.1 \mathrm{pF}$	20	. 01	1 kHz	Series	3	. 002	500
10 pF	$\pm 0.1 \mathrm{pF}$	20	10 ppm	1 kHz	Series	3	. 002	500
19 pF	$\pm 0.1 \mathrm{pF}$	20	. 01	1 kHz	Series	3	. 001	500
100 pF	$\pm 0.1 \mathrm{pF}$	20	10 ppm	1 kHz	Series	3	. 0005	500
190 pF	$\pm 0.1 \mathrm{pF}$	20	. 01	1 kHz	Series	3	. 0005	500
1 nF	$\pm 0.02 \%$	20	10 ppm	1 kHz	Series	3	. 0003	500
1.9 nF	$\pm 0.02 \%$	20	. 01	1 kHz	Series	3	. 0003	500
10 nF	$\pm 0.02 \%$	20	. 01	1 kHz	Series	3	. 0003	500
19 nF	$\pm 0.02 \%$	20	. 01	1 kHz	Series	3	. 0003	500
100 nF	$\pm 0.02 \%$	20	. 01	1 kHz	Series	3	. 0003	500
190 nF	$\pm 0.02 \%$	20	. 01	1 kHz	Series	3	. 0003	500
$1 \mu \mathrm{~F}$	$\pm 0.02 \%$	20	. 01	1 kHz	Series	5	. 0002	500
$1.9 \mu \mathrm{~F}$	$\pm 0.02 \%$	20	. 01	1 kHz	Series	5	. 0002	100
$5 \mu \mathrm{~F}$	$\pm 0.02 \%$	-50	. 012	1 kHz	Series	5	. 0005	100
$10 \mu \mathrm{~F}$	$\pm 0.04 \%$	-50	. 04	100 Hz	Series	5	. 0005	44 Vrms \dagger
$19 \mu \mathrm{~F}$	$\pm 0.04 \%$	-50	. 04	100 Hz	Series	5	. 0005	22 Vrmst
$100 \mu \mathrm{~F}$	$\pm 0.05 \%$	-50	. 04	100 Hz	Series	5	. 001	22 Vrmst
$190 \mu \mathrm{~F}$	$\pm 0.05 \%$	-50	. 04	100 Hz	Series	5	. 001	22 Vrmst
$1000 \mu \mathrm{~F}$	$\pm 0.4 \%$	-150	. 15	100 Hz	Series	5	. 001	$22 \mathrm{Vrms} \dagger$

* Peak up to 10 kHz .
+ Maximum allowable Vrms; subject to maximum Vdc $=50 \mathrm{~V}$ and $\max \mathrm{Vrms}=(39000 / \mathrm{f})$ for $\mathrm{C}=10 \mu \mathrm{~F}$; (26000/f) for $\mathrm{C}=19 \mu \mathrm{~F}$; (13000/f) for $\mathrm{C} \geq 100 \mu \mathrm{~F}$, where $\mathrm{f}=$ frequency (in Hz).

Terminals: Two BNC connectors for 190 pF and under; two 5-way binding posts for 1 nF to 190 nF ; four 5-way binding posts for $1 \mu \mathrm{~F}$ and over. Case ground is also provided.

Stability: $<(0.01 \%+0.1 \mathrm{pF})$ per year, up to $1 \mu \mathrm{~F}$.
Dimensions: 8.6 cm H x 10.5 cm W x 12.7 cm D (3.4" x $4.15^{\prime \prime} \times 5$ "); for $1000 \mu \mathrm{~F}: 8.6 \mathrm{~cm} \mathrm{H} \times 30.5 \mathrm{~cm}$ W x 8.92 cm D (3.4" x 12" x $3.5^{\prime \prime}$).

Transit Case: Optional Model SRC-100 lightweight transit case with handle, suitable for transporting and storing two units. The case provides insulation from temperature changes during transportation or shipping.

Calibration Report: SI traceable initial calibration data provided with unit.

Capacitor Type: Air capacitors for 1 pF and 10 pF ; hermetically sealed silvered mica for 100 pF to 100 nF ; hermetically sealed polystyrene for $10 \mu \mathrm{~F}$; hermetically sealed matalized polycarbonate for $10 \mu \mathrm{~F}$ steps and over.

Operating Temperature: $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

SCA-Value SRC-100

Standard Capacitor Lightweight transit case with handle; See p. 27

Other values of capacitance and calibration frequencies available.

- Optional combinations

IET LABS, INC.

SRR SERIES

Reicfisanstalt type four-terminal standard resistors for low values of 0.1 or less. These stan-

Model	Nominal Value ()	Adjustment to Nominal Value	Calibration Accuracy $(\pm$ ppm)	Disspation (W)		Temperature Coefficient	
Oil	(ppm/C)						
SRR-.0001	0.0001	$.02 \%$	6 to 8	1	4	20	
SRR-.001	0.001	100 ppm	1.5 to 8	1	4	25	
SRR-.01	0.01	100 ppm	1 to 6	1	4	5	
SRR-0.1	0.1	30 ppm	1 to 2	1	4	5	

* When immersed in an oil bath.

Calibration Report: Initial calibration data provided at $25^{\circ} \mathrm{C}$, NIST certificate will be furnished upon request for a nominal charge.
Weight: 1 kg (2.25 lb).

Dimensions: 18 cm across contact arms with 8 cm diameter and 18 cm height for model SRR-0.1; 18 cm across contact arms with 8 cm diameter and 12 cm height for models SRR-. 001 and SRR-0.1.
dards are used for accurate current measure. ments and for comparis ons of lowresistances.

HATS-LR Series

Make accurate calibrations and transfer measurements over three decades of resistance with the $\mathcal{H} \mathcal{A T S}$ - $\mathcal{L R S e r i e s . ~}$

- Steps from 1Ω to $100 \mathrm{k} \Omega$
- Transfers from 0.1Ω to $1 \mathrm{M} \Omega$
- High transfer accuracy - to 1 ppm

The Benefits of Using Transfer Standards

In order to perform calibrations with a high degree of accuracy, reference standards must be employed at every range or decade of the measuring or calibration instrumentation. Clearly, this can be difficult and costly since these standards must be highly stable and their precise values must be known with a high degree of certainty and sufficient resolution. To minimize the cost and difficulty, more practical means of performing such calibrations is to use transfer standards.

If one has a single standard that is calibrated by a national laboratory, one can then compare the transfer standards to the certified standard by ratio techniques. See p. 5 for a full tutorial.

The HATS-LR Series of transfer standards consist of 12 matched resistors, of value R, which may be connected in series or parallel combinations to produce any number of values such as $R / 10, R$, and $10 R$, all with the same known deviation, thereby allowing progressive transfers to higher and lower decades. For example, the $10 \mathrm{k} \Omega$ transfer standard may be used to transfer calibrations across $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$.

The HATS-Y Series (p. 3) of transfer standards may be used for resistances $\geq 1 \mathrm{M} \Omega$.

SPECIFICATIONS

Resistor Type: Wirewound, hermetically sealed, low inductance.
Step Size: $1 \Omega, 10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, or $100 \mathrm{k} \Omega$.
Accuracy:
Initial:
$< \pm 15$ ppm for $1 \Omega, 10 \Omega$ steps;
$< \pm 10 \mathrm{ppm}$ for 100Ω through $100 \mathrm{k} \Omega$ steps.
Long Term: $< \pm 10 \mathrm{ppm} /$ year;
Transfer: $\quad \pm(1 \mathrm{ppm}+0.1 \mu \Omega)$ for $10: 1$ and $100: 1$ ratios for 1Ω, $100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ steps;
± 1 ppm for 10:1 and 100:1 ratios for 10Ω step.
(Transfer accuracies apply when HATS-LR-SB,
HATS-LR-PC, or HATS-LR-SP fixtures are used)
Matching:
Accuracy: within 10 ppm for $1 \Omega, 10 \Omega$ steps; within 5 ppm for 100Ω through $100 \mathrm{k} \Omega$ steps.
Temperature Coefficient:
within $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 1Ω step;
within $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $\geq 100 \Omega$ steps and for HATS-LRTC-10 within $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for HATS-LR-10 only

Calibration Accuracy: <10 ppm for 1Ω $<5 \mathrm{ppm}$ for all others.
Functional Schematic:

Temperature Coefficient:
$\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for HATS-LRTC-10 (low TC version)
$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for HATS-LR-1;
$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for HATS-LR-10;
$\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for HATS-LR-100 through 100 K .
Power Coefficient:
$\pm 0.1 \mathrm{ppm} / \mathrm{mW}$ per resistor for HATS-LR-1;
$\pm 0.15 \mathrm{ppm} / \mathrm{mW}$ per resistor for HATS-LR-10;
$\pm 0.02 \mathrm{ppm} / \mathrm{mW}$ per resistor for HATS-LRTC-10;
$\pm 0.05 \mathrm{ppm} / \mathrm{mW}$ per resistor for HATS-LR-100 through 100K.
Maximum Applied Input: 1500 V maximum or 1 W per resistor, or 5 W for entire unit, whichever applies. 1500 V peak between any terminal and case.

Dimensions: $31.2 \mathrm{~cm} \mathrm{~W} \times 9.7 \mathrm{~cm} \mathrm{H} \times 11.4 \mathrm{~cm} \mathrm{D}\left(12.3^{\prime \prime} \times 3.8^{\prime \prime} \times 4.5^{\prime \prime}\right)$.
Weight: 2 kg (4.4 lb).
Calibration Conditions: Four-wire Kelvin measurements, low power, at $23^{\circ} \mathrm{C}$, traceable to NIST. Initial calibration data supplied with instrument.

Leakage Resistance: Greater than $1 \mathrm{~T} \Omega$ from terminal to case.
Shorting Bars and Compensation Networks: For connecting resistors in parallel or series-parallel combinations.

ORDERING INFORMATION

HATS-LR-1	$1 \Omega /$ step transfer standard
HATS-LR-10	$10 \Omega /$ step transfer standard
HATS-LRTC-10	$10 \Omega /$ step transfer standard with low tempera-
	ture coefficient

HATS-LR-1
HATS-LR-10
HATS-LRTC-10
HATS-LR-100
HATS-LR-1K

HATS-LR-10K HATS-LR-100K HATS-LR-SB HATS-LR-PC HATS-LR-SP OPTIONS

- RM
$10 \mathrm{k} \Omega /$ step Transfer Standard $100 \mathrm{k} \Omega /$ step Transfer Standard Shorting bars for HATS-LR units
Parallel Compensation Network
Series-Parallel Compensation Network
Rack mountable case for standard 19" rack

HATS-Y Series

Make accurate calibrations and transfer measurements over three decades of re. sistance with the $\mathcal{H} \mathcal{A} \mathcal{S}-\mathcal{Y}$ Series.

- Steps from $1 \mathrm{M} \Omega$ to $100 \mathrm{M} \Omega$
- Transfers from $0.1 \mathrm{M} \Omega$ to $100 \mathrm{M} \Omega$
- 11 precisely matched resistors
- High transfer accuracy - better than 2 ppm

The Benefits of Using Transfer Standards

In order to perform calibrations with a high degree of accuracy, reference standards must be employed at every range or decade of the measuring or calibration instrumentation. Clearly, this can be difficult and costly since these standards must be highly stable and their precise values must be known with a high degree of certainty and sufficient resolution. To minimize the cost and difficulty, more practical means of performing such calibrations would be to use transfer standards.

If one has a single standard that is calibrated by a national laboratory, one can then compare the transfer standards to the certified standard by ratio techniques. See p. 5 for a full tutorial.

10 M Ω HATS-Y Transfer Standard
The HATS-Y Series of transfer standards consist of 11 matched resistors, of value R , which may be connected in series or parallel combinations to produce any number of values such as $R / 10, R$, and $10 R$, all with the same known deviation, thereby allowing progressive transfers to higher and lower decades. For example, the $1 \mathrm{M} \Omega$ transfer standard may be used to transfer calibrations across $100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$ and $10 \mathrm{M} \Omega$.

The HATS-LR Series (p. 33) of transfer standards may be used for resistances $100 \mathrm{k} \Omega$ and under.

These transfer standards may also be employed as very precise and stable voltage dividers.

SPECIFICATIONS

Step_Size	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$
Adjustment Accuracy	$\pm 10 \mathrm{ppm}$	$\pm 20 \mathrm{ppm}$	$\pm 20 \mathrm{ppm}$	± 100
Transfer Ac- curacy	$\pm 2 \mathrm{ppm}$	$\pm 2 \mathrm{ppm}$	$\pm 2 \mathrm{ppm}$	$\pm 30 \mathrm{ppm}$
Stability ppm/year	$\pm 10 \mathrm{ppm}$	$\pm 15 \mathrm{ppm}$	$\pm 20 \mathrm{ppm}$	$\pm 30 \mathrm{ppm}$
Stability long term	$\pm 30 \mathrm{ppm}$	$\pm 30 \mathrm{ppm}$	$\pm 30 \mathrm{ppm}$	$\pm 50 \mathrm{ppm}$
Temperature Coefficient	$\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \mathrm{C}$	$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Matching				
Adj. Acc.	$\pm 10 \mathrm{ppm}$	$\pm 10 \mathrm{ppm}$	$\pm 10 \mathrm{ppm}$	$\pm 20 \mathrm{ppm}$
TC	$\pm 1 \mathrm{ppm}$	$\pm 3 \mathrm{ppm}$	$\pm 3 \mathrm{ppm}$	$\pm 5 \mathrm{ppm}$
Calibration Uncertainty	$\pm 5 \mathrm{ppm}$	$\pm 10 \mathrm{ppm}$	$\pm 10 \mathrm{ppm}$	$\pm 15 \mathrm{ppm}$

Calibration Conditions: $23^{\circ} \mathrm{C}$, with meter guard applied to COM and ground applied to G, at low power, traceable to SI. Initial calibration data supplied with instrument.

Leakage Resistance: $>10 \mathrm{~T} \Omega$ from terminal to case.
Power Coefficient: $< \pm 0.05 \mathrm{ppm} / \mathrm{mW}$ per resistor.
Maximum Applied Input: 2500 V, or 1 W per resistor, or 10 W for entire unit, whichever limit applies first. 3500 V peak, between any terminal and case.

Operation: (Switch 0 is left most switch). To set standard to R/10,
set Switch 0 down, Switch 1 up, switch 2 down and so on; Switch 11 off.

To set standard to 10R, set Switch 0 down, Switch 10 up, all other switches off.
To set standard to 1 , set Switches 0 and 6 down, Switches 3 and 9 up, all other switches off.
Dimensions: 35.6 cm W x $16.5 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm}$ D (14" x 6.5" x 4").
Weight: 5 kg (11 lb.$)$.

ORDERING INFORMATION

HATS-Y-100K
HATS-Y-1M
HATS-Y-10M
HATS-Y-10M
$100 \mathrm{k} \Omega /$ Step Transfer Standard
$1 \mathrm{M} \Omega /$ Step Transfer Standard $10 \mathrm{M} \Omega /$ Step Transfer Standard $10 \mathrm{M} \Omega /$ Step Transfer Standard

OPTIONS

- RM Rack mountable case for standard 19" rack

KVD-500 Series

DP-500 Series

- Digital potentiometers and Kelvin-Varley voltage dividers
- Suitable for use in voltage and current dividers
- Eliminates the need for dials \& multi-turn potentiometers
- $1,2,3,4,5$, and 6 decade units are available

SELECTION GUIDE

KVD-500 Series

SPECIFICATIONS

KVD-500 and DP-500

Minimum Potentiometer Resistance: 0.05Ω /decade.
Power Across Input Terminals: 2 W ; others available.
Temperature Coefficient: $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; others available.
Operating Temperature: $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

ORDERING INFORMATION

IET can supply any value in a number of tolerances and decades. A part number is determined as follows:

Kelvin-Varley Voltage divider circuit - more economical than the DP-500. Operates in the same way as the DP-500, except that it has an additional, but variable resistance in series with the wiper arm which goes to zero at the full scale and zero settings. Use this type where the wiper is input into a high input impedance of if it does not affect the particular application; The KVD-500 is suitable for most voltage divider applications. See KVD-600/KVD-700 (p. 29) for additional information.

TRUE potentiometer circuit. Use this type where needed to substitute for a three terminal potentiometer, where all three terminals are required individually.

RS Series

Two terminal variable digital resistance - most economical whenever three terminals are not required. See RS Series data sheet (p .9) for additional information.

DP-500 Series
\square RS Series data sheet (p. 9) for addional information.

Contents
p. 2
:---:
pp. 4-8
:---:
pp. 9-11
:---:
pp. 12-87
:---:
products
pp. $50-87$
:---:
p. 89

KVD-600 • KVD-700 • Series

These standards grade Kelvin-Varley voltage dividers They are fighly accurate, stable, and line ar instruments for use in many applications requiring accurately known voltage or current ratios. In particular, the $\mathcal{K}^{2} \mathcal{D}$ series is especially
appropriate for use in 6ridge circuits, providing two arms of a bridge with a very well known ratio. Applications include line arity determination, the measurement of voltage and resistance, and the calibration of voltage, current, and resistance.

SPECIFICATIONS

Equivalent circuit: A Kelvin-Varley voltage divider may be thought of as being equivalent to a digital potentiometer. However, it has an additional, but variable, resistance in series with the wiper arm, which goes

KVD-700

to zero at the full scale and zero settings. This series resistance has no effect in balanced bridge type applications, where these dividers are often used.

Series	KVD-600	KVD-700
Calibration:	Requires external calibration.	Self calibrating; has internal oil bath.
Ratio Range:	0 to 1.0 of input.	0 to 1.0 input for 1.0 terminal; 0 to 1.1 of input for 1.1 terminal.
Resolution:	0.1 ppm with 7 decades.	0.1 ppm with 7 decades.
Absolute Linearity: $\left[\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}\right]$-S where S is the dial setting.	$\pm 0.5 \mathrm{ppm}$	$\pm 0.1 \mathrm{ppm}$ for $\mathrm{S}=0.1$ to 1.1 ; $\pm 0.1(10 \mathrm{~S})^{1 / 3} \mathrm{ppm}$ for $\mathrm{S}=0$ to 0.1 .
Short-Term Linearity Stability:	$0.2 \mathrm{ppm} / 30$ days under standard laboratory conditions and $\mathrm{V}_{\text {IN }}<100 \mathrm{~V}$.	$0.1 \mathrm{ppm} / 30$ days under standard laboratory conditions and $\mathrm{V}_{\text {IN }}<100 \mathrm{~V}$.
Long-Term Linearity Stability:	± 2.0 ppm of input/year.	$\begin{aligned} & \pm 1.0 \mathrm{ppm} \text { of input/year for } \mathrm{S}=0.1 \text { to } 1.1 \text {; } \\ & \pm(10 \mathrm{~S})^{2 / 3} \mathrm{ppm} \text { of input/year for } \mathrm{S}=0 \text { to } 0.1 \text {; } \\ & \text { Self calibration restores linearity to } 0.1 \mathrm{ppm} \text {. } \end{aligned}$
Temperature Coefficient of Linearity:	$< \pm 0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.	$\begin{aligned} & < \pm 0.1 \mathrm{ppm}{ }^{\circ} \mathrm{C} \text { for } \mathrm{S}=0.1 \text { to } 1.1 \text {; } \\ & < \pm 0.1(10 \mathrm{~S})^{2 / 3} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { for } \mathrm{S}=0 \text { to } 0.1 . \end{aligned}$
Power Coefficient of Linearity:	$\pm 1 \mathrm{ppm} /$ watt.	$< \pm 0.2 \mathrm{ppm}$ of input/W for $\mathrm{S}=1.1$ to 0.1 ; $< \pm 0.2(10 \mathrm{~S})^{2} \mathrm{ppm}$ of input/W for $\mathrm{S}=0.1$ to 0 .
Maximum Input Power:	2.5 watts; 5 watts intermittent.	10 W at 1.0 INPUT; 11 W at 1.1 INPUT.
Maximum Input Voltage:	1000 V	1000 V at 1.0 input terminal; 1100 V at 1.1 input terminal;
Input Resistance:	$100 \mathrm{k} \Omega \pm 50 \mathrm{ppm}$.	$100 \mathrm{k} \Omega \pm 50 \mathrm{ppm}$ at 1.0 INPUT; $110 \mathrm{k} \Omega \pm 50 \mathrm{ppm}$ at 1.1 INPUT.
Maximum Output Resistance:	$66 \mathrm{k} \Omega$, determined by shorting across the input and measuring the resistance across the output terminals.	
Terminals:	High quality low thermal emf gold plated tellurium copper binding posts.	
Dimensions:	$\begin{aligned} & 48.3 \mathrm{~cm} \text { W } \times 13.3 \mathrm{~cm} \mathrm{H} \times 18.5 \mathrm{~cm} \mathrm{D} \\ & \left(19.0^{\prime \prime} \times 5.25^{\prime \prime} \times 7.3^{\prime \prime}\right) . \end{aligned}$	$\begin{aligned} & \text { 5.25" high rack panel; } 13.3 \mathrm{H} \times 48.2 \mathrm{~W} \times 33.0 \mathrm{D} \\ & \left(5.25^{\prime \prime} \times 19.0^{\prime \prime} \times 13.0^{\prime \prime}\right) . \end{aligned}$
Weight:	4.1 kg (9 lb).	8.2 kg (18 lb).

Please see the Genrad 1423-A Precision Decade Capacitor Consult IET

HACS-Z Series

p. 1 of 2

The $\mathcal{H A C S}-Z$ provides a wide range of capacitance in increments as low as 1 pF and a total capacitance of up to $10,000 \mu \mathcal{F}$. With its figh

- High accuracy: 0.05\% or 0.1\%
- Low zero capacitance <0.1 pF
- Programmable version available
- Trimmable capacitors for lower decades
- 3-Terminal shielded construction
- Excellent stability-100 ppm/yr
- Special high voltage units up to 10 kV
- Excellent TC - begins at $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

SPECIFICATIONS

Capacitor Type: Air capacitors for 1 and 10 pF steps; stabilized sealed silvered-mica for 100 pF through 100 nF steps. hermetically sealed polystyrene capacitors for $1 \mu \mathrm{~F}$ steps; hermetically sealed metallized polycarbonate capacitors for $10 \mu \mathrm{~F}$ steps and over; polypropylene for $1000 \mu \mathrm{~F}$ steps.
$1,10,100$ and 1000 pF decades are trimmable from rear.

Accuracy:

A: $\pm(0.05 \%+0.5 \mathrm{pF}) ; \pm 0.5 \%$ for $100 \mu \mathrm{~F}$ steps.
B: $\pm(0.1 \%+1.0 \mathrm{pF}) ; \pm 0.5 \%$ for $100 \mu \mathrm{~F}$ steps.
[If $1,000 \mu \mathrm{~F}$ steps are present, accuracy for 6 to $10 \mu \mathrm{~F}$ at 1 kHz is:
$\pm(0.1 \%+0.5 \mathrm{pF})$]

Test Conditions:

at 1 kHz for 1 pF to $10 \mu \mathrm{~F} ; 100 \mathrm{~Hz}$ for $1 \mu \mathrm{~F}$ and over,
at $23^{\circ} \mathrm{C}$, no zero subtraction, measured with a 3 -terminal connection. (Calibration at other frequencies is available, and different frequencies may be selected for different decades.) SI traceable.

Range: 0 to $10,000 \mu \mathrm{~F}$ available, with minimum increments of 1 pF ; see table on next page.

Dissipation Factor:
<0.002 for 1 pF and 10 pF steps;
<0.001 for 100 pF steps;
<0.0005 for 1 nF and 2 nF steps;
<0.0003 for 3 nF step through all $0.01 \mu \mathrm{~F}$ steps;
<0.0004 for $0.1 \mu \mathrm{~F}$ steps;
<0.0007 for $1 \mu \mathrm{~F}$ steps;
<0.007 for $10 \mu \mathrm{~F}$ steps;
<0.005 for $100 \mu \mathrm{~F}$ steps.

Zero Capacitance:

$\leq 0.1 \mathrm{pF}$, measured with a 3-terminal connection, for units with highest decade steps $\leq 100 \mathrm{nF}$;
$\leq 2 \mathrm{pF}$, measured with a 3-terminal connection, for units with highest decade steps $1 \mu \mathrm{~F}$.
quality, tigft tolerance capacitors, it is an ideal part of a testorcalibration system.

Six Decade HACS-Z Capacitance Substituter

Insulation Resistance: >50,000 $\mathrm{M} \Omega$.
Operating Frequency Range: 10 Hz or less to at least 1 MHz .
Stability:
A: $\pm(100 \mathrm{ppm}+0.1 \mathrm{pF})$ per year for $0.1 \mu \mathrm{~F}$ steps and under; $\pm 200 \mathrm{ppm}$ per year for $1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ steps;
$\pm 500 \mathrm{ppm}$ per year for $100 \mu \mathrm{~F}$ and $1000 \mu \mathrm{~F}$ steps.
B: $\pm(200 \mathrm{ppm}+0.1 \mathrm{pF})$ per year for all steps.
$\pm 500 \mathrm{ppm}$ per year for $1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ steps;
$\pm 1000 \mathrm{ppm}$ per year for $100 \mu \mathrm{~F}$ and $1000 \mu \mathrm{~F}$ steps.
MAXIMUM VOLTAGE:
1 pF through 100 nF steps: 500 V peak max up to 10 kHz ;
$1 \mu \mathrm{~F}$ steps: 50 V peak max
$10 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$ steps : $(\mathrm{Vdc}+\mathrm{Vac})<30 \mathrm{~V}$ or $(\mathrm{Vac})<22 \mathrm{~V}$, whichever applies first, where Vac=1.8×104/f, and f is freq. in Hz
Optional: up to 10 kV
Temperature Coefficient:
A: $\approx 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $0.1 \mu \mathrm{~F}$ steps and under; $-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $1 \mu \mathrm{~F}$ through $100 \mu \mathrm{~F}$ steps;
$-150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $1000 \mu \mathrm{~F}$ steps;
Operating Temperature Range: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Operating Frequency Range: 10 Hz or less to at least 1 MHz .
Shielding: Double shielded construction.
Dimensions: 43.2 cm W x 14.2 cm H x 30.4 cm D (17" x 5.6" x 12"), for 6 decade version.
Weight: $5.9 \mathrm{~kg}(13 \mathrm{lb})$, for 6 decade version.
Connection to Substituter: BNC (standard) or 874 type coaxial connectors (optional) labeled HI and LO on front panel. Also available is an optional 36 pin connector providing individual BCD weighted equivalent contacts for each decade.

DOUBLE SHIELDED CONSTRUCTION

The shielding is divided into two different parts: an inner shield that minimizes the low terminal-to-guard capacitance, and an outer shield (the case) that minimizes the detector input capacitance and noise. When these two shields are connected together, the HACS-Z becomes an excellent 3-terminal capacitance substituter with low zero capacitance.

${ }_{\substack{\text { Contents } \\ \text { P. }}}^{\text {cter }}$	Appic	Stection	Prouts		Index	High Accuracy
						Capacitance Substituter

ORDERING INFORMATION
STANDARD MODELS

*For 10 position switches, "0" - "9", in lieu of 11 position "0" - "10", delete E from model number. Add suffix: BCD- for the BCD output option, RM- for rack mount option.

OPTIONAL MODELS

In order to satisfy any requirement for a HACS-Z Series capacitor, generate a part number from the chart below.

Please see the Genrad 1422 Precision Capacitor Series
 p. 66

VI-700 Series

Various features and options make the VI-700
an effective choice for many manual and programmable voltage and current applications.

- Voltage output range of $100 \mu \mathrm{~V}$ to 20 V or 200 V
- Current output range of $0.1 \mu \mathrm{~A}$ to $20 \mathrm{~mA} \sin 20$ mA
- $3 ½$ digit resolution, 0.75 LSD accuracy
- Manual thumbwheel operation or programmable digital input, IEEE-488 or parallel BCD interface.
- Optional portable power pack
- May be used as a component in a closed loop control system

Model VI-700 Precision Voltage and Current Source

SPECIFICATIONS

Voltage	
Output Ranges	$\begin{aligned} & 200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V} ; \\ & \text { (200 V with HV option). } \end{aligned}$
Resolution	$100 \mu \mathrm{~V}, 1 \mathrm{mV}, 10 \mathrm{mV}$; (100 mV with HV option).
Accuracy	$\begin{aligned} & \pm(75 \mathrm{ppm}+50 \mu \mathrm{~V}) ; 200 \mathrm{mV} \text { range; } \\ & \pm(75 \mathrm{ppm}+0.25 \mathrm{mV}), 2 \mathrm{~V} \text { range; } \\ & \pm(75 \mathrm{ppm}+2.5 \mathrm{mV}), 20 \mathrm{~V} \text { range; } \\ & \text { at } 23^{\circ} \mathrm{C}, \text { no load, after warmup. } \end{aligned}$
Output Current	$70 \mathrm{~mA},(200 \mathrm{~mA}$ with HP option) maximum load up to 20 V ; (10 mA for 200 V range with HV option); with LED overload indicator.
Output Impedance	$5 \mathrm{~m} \Omega$ typical, $40 \mathrm{~m} \Omega$ for 20 V range.
Noise and Ripple	$50 \mu \mathrm{Vrms}$ on 200 mV and 2 V ranges; $50 \mu \mathrm{Vrms}$ on 200 mV and 2 V ranges; $100 \mu \mathrm{Vrms}$ on 20 V range.
Tempco	$\begin{aligned} & \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { typical; } \\ & \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max. } \end{aligned}$

Current					
Output Ranges	$200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}$, 200 mA (with HI option).				
Resolution	$0.1 \mu \mathrm{~A}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A} ;$ $100 \mu \mathrm{~A}($ with HI option).				
Accuracy $\pm(75 \mathrm{ppn}$	$+.05 \mu \mathrm{~A}) ; 200 \mu \mathrm{~A} ;$				
$\pm(75 \mathrm{ppm}+0.25 \mu \mathrm{~A}), 2 \mathrm{~mA} ;$					
$\pm(75 \mathrm{ppm}+2.5 \mu \mathrm{~A}), 20 \mathrm{~mA} ; 23^{\circ} \mathrm{C}$, no load.		$	$	Compliance Voltage	$0-20 \mathrm{~V} ;$ with LED overload indicator.
:---	:---				
Noise	$8-20 \mathrm{nA}$.				

General	
Digital Input	$3^{1 / 2}$ digit parallel BCD or IEEE-488 interface; a front panel push-button selects REMOTE or LOCAL operation.
Isolation	Floating outputs, optically isolated from digital inputs; voltage and current outputs may be used in either polarity.
Power Requirements	$\begin{aligned} & 105-125 \mathrm{~V} \text { or } 210-250 \mathrm{~V} \text {; } \\ & 50-60 \mathrm{~Hz} ; 5 \mathrm{~W} . \end{aligned}$
Dimensions	$21.6 \mathrm{~cm} \mathrm{~W} \times 12.6 \mathrm{~cm} \mathrm{H} \times 22.9 \mathrm{~cm} \mathrm{D}$ ($8.5^{\prime \prime} \times 2.8^{\prime \prime} \times 9.0^{\prime \prime}$) for Standard Model; $21.6 \mathrm{~cm} \mathrm{~W} \times 8.7 \mathrm{~cm} \mathrm{Hx} 23.5 \mathrm{~cm}$ ($8.5^{\prime \prime}$ x 3.44 " x 9.25 ") for IEEE-488 interface option.
Weight	2.3 kg (5 lb).

Operating Temperature Range: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. StorageTemperature Range: $-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

ORDERING INFORMATION

Model VI-700-110 Model VI-700-220 -HP Option -HI Option -HV Option -RS Option -BCD Option -IEEE Option IEEE-488 IEEE-488 BP-511

Precision Voltage \& Current Source; 110 Vac op. Precision Voltage \& Current Source; 220 Vac op. High power output, up to 200 mA output 200 mA output (in addition to $200 \mu \mathrm{~A}-20 \mathrm{~mA}$) 200 V output (in addition to $100 \mu \mathrm{~V}-10 \mathrm{mV}$) Remote sensing directly to load Parallel BCD Remote Programming IEEE-488 Remote Programming Interface hardware (see p. 48) Interface software (see pp. 46-47, 49) Battery Pack, AC source, 115 V, 60 Hz, 300 W (see p. 48)

HSVR Series

The $\mathcal{H S}$ 次Series is a fighty stable compact voltage reference with a very low temper. ature coefficient. It is suitable for printed
circuit board mounting and whene ver prec is ion voltages are required for test, calibration, digital and analog conversions, etc...

- Replacement for Eppley and other standard cells
- High stability - up to 25 ppm/year (better available)
- Short circuit output protection
- Trimmable outputs
- Small size - PC board mounting
- Excellent temperature coefficient $-1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

One inch cubeHigh Stability Model HSVR Voltage Reference
SPECIFICATIONS

Model Description:	Model	Input Voltage $\pm 1 \mathrm{~V}$	Output Voltage*	Max. Output Current
	HSVR-1.01	12 V	1.01 V	1 mA
	HSVR-6.3	22 V	6.3 V	1 mA
	HSVR-12.6	24 V	12.6 V	1 mA
	HSVR-18.0	30 V	18.000 V	1 mA
HSVR-18.9	30 V	18.9 V	1 mA	

* Other values available may be specified as a cell replacement.

Output Voltage Stability:
1 ppm per 24 hours;
10 ppm per month;
25 ppm per year.
Calibration Accuracy: <2 ppm
Temperature Coefficient:
$<1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical for temperature range of 0° to $50^{\circ} \mathrm{C}$.
Operating Temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

Input Voltage: Operating range of $\pm 3 \mathrm{~V}$.
Input Voltage Regulation: Within 1 ppm of output voltage for a 10% change of input voltage.

Settling Time:
To within 1 ppm of final value after 10 minutes; To within 10 ppm of final value after turn on.

Input Power: 0.5 W , nominal.
Dimensions: 2.54 cm W x 2.54 cm H x 2.54 cm D (1" x 1" x 1").

PIN ASSIGNMENTS:

				Pin No.	Function
	89	Diameter of pin circle:	0.468"	1	Vout low
Bottom	$7 \bullet \bullet$	Pin diameter:	0.04"	2	NC - no user connection
	$6 \bullet \bullet 3{ }^{\circ}$	Location of pin " 1 ":	3:00	3	Vout high
View	$5^{\circ} \cdot 236^{\circ}$	Pin Length:	0.25 " $\pm .05{ }^{\prime \prime}$	4	NC - no user connection
				5	NC - no user connection
				6	NC - no user connection
				7	Power supply low
				8	NC - no user connection
				9	Power supply high

ORDERING INFORMATION HSVR-18.9

HSVR-18.0 18.0 V High Stability Voltage Reference 18.9 V High Stability Voltage Reference

The HSVR Series may be supplied in custom voltages or multiple output combinations.

IMF-600A Series p.iot2

Various output options and autoranging make the I MF-600 an attractive choice for many imped. ance measurement and process requirements.

CAPACITANCE•INDUCTANCE•RESISTANCE

- C-L-G-R
- Dissipation for capacitors
- $1 / Q$ for inductors
- Analog, digital, or 4-20 mA outputs
- High accuracy
- Protected circuitry
- Very broad range
- Analog \& digital outputs
- 4 -wire shielded Kelvin test terminals
- Excellent for locating shorts
- Optional autoranging
- Optional portable ac power pack

DESCRIPTION

A perfect bench companion to your DMM, the IMF-600A is a cost effective manual or autoranging digital impedance meter that complements the basic DMM to complete your test and measurement needs. With its low resistance measurement capacity and Kelvin leads, the IMF-600A is invaluable for locating PC board shorts.

A number of attractive features make it a versatile device. A companion limits comparator, Model LC-603, allows selection for all functions, on a GO/NO GO basis for inspection, sorting, quality control, component selection, etc...

Automatic measurement for all functions is provided automatically with a $31 / 2$ digit display. No balancing or manual operations are required.

Analog \& digital outputs may be used to interface to comparators or other devices.

4-Wire shielded Kelvin test terminals - short circuit location ensures precision measure-
ments even for very low impedances like contact or wire resistance and makes locating PC board short circuits an easy task.

Principle of Operation

The impedance Z_{x} of an unknown component X is defined as:

$$
Z_{x}=V_{x} / I_{x}
$$

where V_{x} is the voltage across the unknown and I_{x} is the current through the unknown. The IMF-600A implements this computation

as shown conceptually in the figure. A sine wave generator drives current I_{x} through unknown Z_{x} and the standard resistor R_{s} in series with it. Two ac coupled differential amplifiers measure the voltages V_{x} and V_{r} across the unknown and the resistor respectively. The impedance Z_{x} is then computed as follows:

$$
\begin{gathered}
Z_{x}=V_{x} / I_{x} \\
Z_{x}=R_{s} V_{x} / V_{s}
\end{gathered}
$$

Except for pure resistance and conductance, Z_{x} is a complex ratio with real and imaginary components which are then computed. The voltage being measured, e.g. Vx is broken down into the "in phase or 0° " and the "quadrature or $90^{\circ "}$ components with respect to the test signal. These are used to provide the real and imaginary portions of the complex impedance. A pure resistance, for example, will produce only an "in phase" component, whereas an ideal capacitor will result in only a "quadrature" signal.

PROCESS CONTROL APPLICATIONS

Many industrial and manufacturing processes such as flow or fill procedures or many similar fabricating steps lend themselves to automatic control since the parameter to be controlled is often proportional to the capacitance.

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	Index p. 89

Digital
 Manual/Autoranging Impedance Meter

GENERAL SPECIFICATIONS

C-Range	1*	2	3	4	5	6	7	8
Full Scale	200 pF	2 nF	20 nF	200 nF	$2 \mu \mathrm{~F}$	$20 \mu \mathrm{~F}$	$200 \mu \mathrm{~F}$	$2000 \mu \mathrm{~F}^{1}$
Resolution	0.1 pF	1 pF	10 pF	100 pF	1 nF	$0.01 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$
Test Signal	1.0 Vrms		100 mVrms					10 mVrms
Accuracy ${ }^{4}$	$\begin{aligned} & \pm(0.25 \%+1 \mathrm{LSD} \\ & +0.5 \% \text { G reading }) \end{aligned}$	$\pm(0.25 \%+1$ LSD $+0.5 \%$ Greading $)$					$\begin{aligned} & \pm(0.25 \%+1 \mathrm{LSD} \\ & +0.2 \% \text { Greading }) \end{aligned}$	$\begin{aligned} & \pm(5 \%+1 \\ &+ 1 \% \text { LSD } \\ &+1 \% \text { reading }) \end{aligned}$
G - Range	1	2	3	4	5	6	7	8
Full Scale	$2 \mu \mathrm{~S}$	$20 \mu \mathrm{~S}$	$200 \mu \mathrm{~S}$	2 mS	20 mS	200 mS	2000 mS	20 S
Resolution	$0.001 \mu \mathrm{~S}$	$0.01 \mu \mathrm{~S}$	$0.1 \mu \mathrm{~S}$	$1 \mu \mathrm{~S}$	$10 \mu \mathrm{~S}$	0.1 mS	1 mS	10 mS
Test Signal	1.0 Vrms		100 mVrms					10 mVrms
Accuracy	$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { C reading }) \end{aligned}$	$\pm(0.25 \%+1$ LSD + 0.5\% Creading)					$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.2 \% \text { C reading }) \end{aligned}$	$\begin{gathered} \pm(5 \%+1 \text { LSD } \\ +1 \% \text { C reading }) \end{gathered}$
L-Range	1**	2	3	4	5	6	7	8
Full scale	$200 \mu \mathrm{H}$	2 mH	20 mH	200 mH	2 H	20 H	200 H	200 H
Resolution	$0.1 \mu \mathrm{H}$	$1 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	0.1 mH	1 mH	10 mH	0.1 H	0.1 H
Test Signal	100 mA	10 mA	1 mA	$100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$	
Accuracy ${ }^{4}$	$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { R reading }) \end{aligned}$	$\pm(0.25 \%+1$ LSD $+0.5 \%$ Rreading $)$					$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { R reading }) \end{aligned}$	
R -Range	1	2	3	4	5	6	7	8
Full Scale	2Ω	20Ω	200Ω	$2 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega$	$2 \mathrm{M} \Omega$	$2 \mathrm{M} \Omega^{2}$
Resolution	$1 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	0.1Ω	1Ω	10Ω	100Ω	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$
Test Signal	100 mA	10 mA	1 mA	$100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$	
Accuracy	$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { Lreading }) \end{aligned}$	$\pm(0.25 \%+1$ LSD + 0.5\% L reading)					$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { L reading }) \end{aligned}$	
D - Range	1	2	3	4	5	6	7	8
Full Scale	1.999^{3}							
Resolution	0.001							
Accuracy ${ }^{4}$	$\pm(1 \%+0.002)$ for L or C > 200 counts $\pm(2 \%+0.01)$ for L or C 50 to 199 counts							$\pm(5 \%+0.01)$

Impedance Models:
Parallel for C and G :

Test Conditions:

1. After correction for test lead zero reading
2. After 10 minute warm up.
3. Between $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$.

Test Frequency: $1 \mathrm{kHz} \pm 1 \%$.
Measurement Rate: 2.5 measurements per second.
Analog Outputs: Impedance quantity and dissipation D are simultaneously available at the rear panel, scaled at $1 \mathrm{~V} / 1000$ counts; accuracy: $\pm(0.25 \%$ of display +1 mV).
Digital Output (Optional): 3-1/2 digit, BCD, for data and 3 bits for range; TTL, positive true.

Current Output (Optional): 4-20 mA corresponding to 0-2000 counts of display.

Input Protection: Diode and resistor discharge network.
External dc Bias: Up to 100 V, floating, may be applied across a capacitive component through screw terminals on the rear panel terminal strip; 0.1 A maximum.

Power Requirements: $105-125 \mathrm{~V}$ or $210-250 \mathrm{~V}, 50-60 \mathrm{~Hz} ; 5 \mathrm{~W}$.
Calibration Interval: 12 months.
Dimensions: 21.6 cm W x $11.4 \mathrm{~cm} \mathrm{H} \times 30.5 \mathrm{~cm} \mathrm{D}\left(8.5^{\prime \prime} \times 4.5^{\prime \prime} \times 12.0^{\prime \prime}\right)$
Weight: $6.8 \mathrm{~kg}(15 \mathrm{lb})$.
NOTES

* HSC Option High sensitivity capacitance range option. 20 pF full scale; 0.01 pF resolution; 1.0 Vrms test signal; accuracy ${ }^{4}(\pm 0.25 \%+0.3 \mathrm{pF})$.
** HSL Option High sensitivity inductance range option. $20 \mu \mathrm{H}$ full scale; 0.01 $\mu \mathrm{H}$ resolution; 100 mA test signal; accuracy ${ }^{4} \pm(0.25 \%+0.5 \mu \mathrm{H})$.

1. Capacitance: Higher capacitance ($>200 \mu \mathrm{~F}$) may be measured on the inductance function by the following conversion: Series model capacitance $\mathrm{C}=-2.533 \times 10^{-8} / \mathrm{L}$.
2. Resistance: Higher resistance ($>2 \mathrm{M} \Omega$) may be measured on the conductance function Range 1: R (in ohms) $=1 / G$ (in siemens).
3. Dissipation (D or $1 / Q$): Obtain D values by pressing D button. Values greater than 1.999 may be computed as follows:
$\mathrm{D}=\mathrm{G} / 2 \pi \mathrm{ff}=1.592 \mathrm{G}^{\prime} / \mathrm{C}^{\prime}$
$\mathrm{Q}=2 \pi \mathrm{fL} / \mathrm{R}=0.628 \mathrm{~L}^{\prime} / \mathrm{R}^{\prime}$
where $\mathrm{G}^{\prime}, \mathrm{C}^{\prime}, \mathrm{L}^{\prime}$, and R^{\prime} are in counts on the same range.
4. Accuracy: After correction for test lead zero reading; $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C} ; \mathrm{C}, \mathrm{L}, \mathrm{G}$, or R readings are in absolute counts; ignore decimal point.

ORDERING INFORMATION

IMF-600A-110
IMF-600A-220
IMF-600AR
-HSC Option
-HSL Option
-DO Option
-I Option

Digital Impedance Meter; 110 Vac operation Digital Impedance Meter; 220 Vac operation Autoranging Digital Impedance Meter High Sensitivity Capacitance (20 pF Range) High sensitivity inductance ($20 \mu \mathrm{H}$ Range) Digital output of reading and range Current output (4-20 mA corresponding to 0-2000
counts of display)
Single Channel Digital Limits Comparator (Requires DO option; may be cascaded) Portable ac Source, 115 V, 60 Hz, 300 W (see p. 48)

LCR-500

The LCR-500 is an economic al powerfulfand held LCRmeter with features rivaling expensive benchtop systems.

- $1 \mathrm{~m} \Omega$ to $10 \mathrm{M} \Omega$;
0.1 pF to 10 mF ;
$0.1 \mu \mathrm{H}$ to $10,000 \mathrm{H}$
- Autoranging and manual ranging
- Two frequency operation: 120 Hz and 1 kHz
- Sorting capability with selectable tolerances
- True bridge complex impedance capacity, L/C/R values as well as simultaneous D/Q (Dissipation/ Quality)
- Auto power off; uses standard 9 V battery
- Operating guide attached to unit
- Automatic statistics

LCR-500 Handheld Impedance Meter

CAPACITANCE (C)
Full scale ranges: $\quad 1,000 \mathrm{pF}$ to 10 mF , in 8 ranges.
Resolution: 0.1 pF, 0.001 mF
Accuracy':

Range	120 Hz	1 kHz
10 mF	$\pm(5.0 \%+5$ LSD $)$	NA
$1,000 \mu \mathrm{~F}$	$\pm(1.0 \%+5$ LSD $)$	$\pm(5.0 \%+5$ LSD $)$
$100 \mu \mathrm{~F}$	$\pm(0.7 \%+3$ LSD $)$	$\pm(1.0 \%+5$ LSD $)$
$1,000 \mathrm{nF}, 10 \mu \mathrm{~F}$	$\pm(0.7 \%+3$ LSD $)$	$\pm(0.7 \%+3$ LSD $)$
100 nF	$\pm(0.7 \%+5$ LSD $)$	$\pm(0.7 \%+3$ LSD $)$
10 nF	$\pm(1.0 \%+5$ LSD $)$	$\pm(0.7 \%+5$ LSD $)$
$1,000 \mathrm{pF}$	NA	$\pm(1.0 \%+5$ LSD $)$

D (Dissipation): $\quad \pm(0.7 \%+100 /$ C rdg +5 LSD), basic accuracy.

Impedance Model:

INDUCTANCE (L)
Full scale ranges: 1 mH to $10,000 \mathrm{H}$ in 8 ranges.
Resolution: $0.1 \mu \mathrm{H}-1 \mathrm{H}$
Accuracy ${ }^{1,2}$:

R

Range	120 Hz	1 kHz
$10,000 \mathrm{H}$	5% typical	NA
$1,000 \mathrm{H}$	$\pm(1.0 \%+5$ LSD $)$	5% typical
100 H	$\pm(0.7 \%+5$ LSD $)$	$\pm(1.0 \%+5$ LSD $)$
$1 \mathrm{H}, 10 \mathrm{H}$	$\pm(0.7 \%+5$ LSD $)$	$\pm(0.7 \%+5$ LSD $)$
100 mH	$\pm(1.0 \%+5$ LSD $)$	$\pm(0.7 \%+5$ LSD $)$
10 mH	$\pm(2.0 \%+5$ LSD $)$	$\pm(1.2 \%+5$ LSD $)$
1 mH	NA	$\pm(2.0 \%+5$ LSD $)$

$D(1 / Q): \pm(1.2 \%+100 / \mathrm{Lrdg}+5$ LSD), basic accuracy.

Impedance Model:

1) LSD: Least significant digit
2) $+\left(\mathrm{L}\right.$ counts $\left.\times 10^{-4}\right) \%$.

RESISTANCE (R)
Full scale ranges: 10Ω to $10 \mathrm{M} \Omega$, in 7 ranges.
Resolution: $1 \mathrm{~m} \Omega-0.001 \mathrm{M} \Omega$
Accuracy ${ }^{1}$:

Range	Accuracy
$10 \mathrm{M} \Omega$	$\pm(2.0 \%+8 \mathrm{LSD})$
$1 \mathrm{M} \Omega$	$\pm(0.5 \%+5 \mathrm{LSD})$
$1 \mathrm{k} \Omega-100 \mathrm{k} \Omega$	$\pm(0.5 \%+3 \mathrm{LSD})$
100Ω	$\pm(0.8 \%+5 \mathrm{LSD})$
10Ω	$\pm(1.2 \%+8 \mathrm{LSD})$

GENERAL SPECIFICATIONS

Displays:
L/C/R: Maximum display of 9999 except at $10 \mathrm{mF}(120 \mathrm{~Hz})$ and 1 mF (1 kHz) measurement ranges which have a maximum display of 1999.

D/Q: 3 digits, maximum display 999 (autorange).
Status: Annunciators for units, low battery, frequency, open
fuse; audio tone for tolerance testing, and other test conditions.
Ranging mode: Auto and manual.
Test frequency: 1 kHz and 120 Hz .
Test signal level: 0.9 Vrms approximately.
Measurement rate: 1 measurement/second, nominal.
Measurement terminals: 2 banana jacks and 2 easy-insert component sockets.
Operating modes: Relative, calibration, tolerance sorting, and max/ min/avg recording.
Input protection: 70 mA fast-blow 250 V fuse.
Auto power-off time: Approximately 5 minutes; may be disabled.
Power Requirements:

1) Battery, 9 V ;
2) External adapter, $12-15 \mathrm{Vdc}, 50 \mathrm{~mA}$.

Dimensions: 19.2 cm L x 9.0 cm W x 3.7 cm H (7.56 " x 3.54 " x 1.46 ").
Weight: $390 \mathrm{~g}(3 \mathrm{oz})$.
ORDERING INFORMATION

LCR-500	Autoranging LCR meter
LCR-5001	AC adapter, 110 V
LCR-5001-220	AC adapter, 220 V
LCR-5002	Carrying case
CC-25	Component clip

LOM-510A Series p. 1 of 2

Fe atures and accessories to assure that very
low resistance measurements are accom. 0.02% basic accuracy
plisfed accurately, easily, and economically. - Digital output

Features and accessoriesto assure that very plisfied accurately, easily, and economically.

HIGH PERFORMANCE LOW RESISTANCE MEASUREMENT

The LOM-510A has $41 / 2$ digits, 0.02% basic accuracy and $1 \mu \Omega$ resolution. Its 4-terminal measurement technique eliminates lead resistance errors and 80 dB of ac noise rejection provides rock-steady readings even in noisy locations. The unit comes with rugged 4-terminal test clips and a large selection of optional probes, clips and fixtures allowing attachment to any low-resistance unknown.

Switched dc Mode:
Allows measurement of switch contacts, welds, shunts, PC board tracks and other primarily resistive elements. Thermal emf effects are eliminated.

Constant dc Mode:
Suitable for measuring the resistance of inductive components such as coils or transformers.

Pulsed Mode:
Provides low drive current to allow measurements of fuses, thermistors, and other thermally sensitive devices.

Dry Circuit:
Assures that oxides and film contacts are not punctured. The Dry Circuit Mode limits the open circuit voltage to 50 mV . The Model LOM-510A/20 limits the open circuit voltage to 20 mV .

Model LOM-510A Micro-ohmmeter shown with LOM-501 Standard 4-Terminal Kelvin clips

Model LOM-510A shown with LOM-504 heavy duty Kelvin clips

Portability permits many field applications such as the measurement of very low resistances of rail or pipe bonds, welds, airframes, motors, transformers, and power distribution apparatus.

The optional Model BP-511 Battery Driven ac Power Source will operate the micro-ohmmeter from its internal battery for more than an hour continuously, worst case, and for an indeterminately large number of hours when used in normal operation. In addition, the 40 watt, $120 \mathrm{Vac}, 60 \mathrm{~Hz}$ output can be used to make almost any other small instrument or tool portable.

The BP-511 AC Power Source can be mechanically attached to the micro-ohmmeter with the optional Model LOM-513 coupler kit, and both units come in heavy-duty metal cases. A built-in battery charger is provided as are LED's to indicate low-battery conditions and charger operation. See the BP-511 Battery Driven ac Power Source data sheet.

Contents
p. 2
:---:
pp. 4-8. 9-11
:---:
pp. 12-87
:---:
products
pp. $50-87$
:---:
p. 89

LOM-510A Series

p. 2 of 2

SPECIFICATIONS

LOM-510A MICRO-OHMMETER

Accuracy:

Model LOM-	SW (Switched dc)	DC (Continuous dc)	Pulsed Mode
510 A	$0.02 \%+2$ counts $+2 \mu \Omega$	$0.04 \%+2$ counts $+2 \mu \Omega$	$0.02 \%+4$ counts $+2 \mu \Omega$
$510 \mathrm{~A} / 20$	$0.03 \%+3$ counts $+2 \mu \Omega$	$0.05 \%+3$ counts $+2 \mu \Omega$	$0.03 \%+4$ counts $+2 \mu \Omega$

Range (Full Scale)	Drive	Max Dissipation		
$19.999 \mathrm{~m} \Omega$	1 A	20 mW	5.0 mW	Resolution
$199.99 \mathrm{~m} \Omega$.1 A	2.0 mW	.50 mW	$1 \mu \Omega$
1.9999Ω	10 mA	.2 mW	.05 mW	$10 \mu \Omega$
19.999Ω	1 mA	.02 mW	.005 mW	$100 \mu \Omega$
199.99Ω	.1 mA	.002 mW	.0005 mW	$10 \mathrm{~m} \Omega$

Zero Adjust: Active only in DC (Continuous dc) mode.
Noise Rejection: 80 dB for SW (Switched dc) and Pulsed Mode; 60 dB for DC (Continuous dc) mode.

SW (Switched dc) Mode: Current switched on for 166 ms , then off for 500 ms (duty cycle $=0.25$).

Pulsed Mode: One cycle of SW (Switched dc) mode; enabled by shorting two contacts on rear panel connector.
Display: $41 / 2$ digit, 0.5 inch, red LED display.
Display Overrange Indication: Flashes for DC (Continuous dc) and SW (Switched dc); blanks in Pulsed mode.
Measurement Rate: 1.5 readings/second.
Connections to Unknown: 4-terminal Kelvin leads with shield.
Outputs: 5 BCD digits for value and polarity; Pulsed Mode Control lines; power supply lines; 25 pin "D" connector.
Warm up time: 1 minute to rated accuracy.
Accuracy vs. Temperature: Stated accuracy applies over an ambient temperature range of 18 to $27^{\circ} \mathrm{C}$. Error doubles over the range of 10 to $40^{\circ} \mathrm{C}$.
Accessories Supplied: LOM-501 test clips.
Power Requirements: $105-125 \mathrm{~V}$ or $210-250 \mathrm{~V}, 50-60 \mathrm{~Hz}, 30 \mathrm{~W}$ max.
Dimensions: 22.9 cm W $\times 5.1 \mathrm{~cm} \mathrm{H} \times 27.9 \mathrm{~cm}$ D ($9^{\prime \prime} \times 2$ " $\times 11^{\prime \prime}$)
Weight: $2.7 \mathrm{~kg}(6 \mathrm{lb})$.

ACCESSORIES

504 probe set has 1.9 cm (1.75") jaw openings and 3.7 m (12') lead lengths that permit measurements on large bushings, welded and bolted joints, rails and pipes, transformers and motors, fuses, power distribution busses or nearly any other large electrical components.
LOM-506 4-Terminal Kelvin Microprobes: The Model LOM-506 microprobes permit measurement of chips, circuit board components, and fine conductor traces. They also make measurements possible in areas which are inaccessible to other probes, such as inside a connector. The finely-pointed, spring-loaded tips are on 1.27 mm (.05") centers. They are made from hardened beryllium copper, gold plated over nickel plate. They are replaceable

LOM-512 COMPUTER INTERFACE AND LIMITS COMPARATOR

Serial Output: Allows connection to RS-232C interface of a computer or a printer. Can be converted to true RS-232C with simple external circuit for applications requiring cable lengths in excess of twelve feet.

Additional TTL-compatible output signals on rear panel connector: Low Limit Exceeded, High Limit Exceeded, Data Ready.

Input: Trigger measurement - initiates a single measurement cycle, TTL-compatible, available at rear panel connector.

Pulse Mode Enable \& Trigger Switches: Allow manual operation of the single measurement mode of operation of Model LOM-510A. Useful for measurements on thermally sensitive components.

Power Requirements: Powered by LOM-510A Micro-Ohmmeter.
Accessories Supplied: Model LOM-512-1 adapter cable.
Dimensions: 22.9 cm W x $5.1 \mathrm{~cm} \mathrm{H} \times 27.9 \mathrm{~cm}$ D ($9^{\prime \prime} \times 2^{\prime \prime} \times 11$ ").
Weight: $2.3 \mathrm{~kg}(5 \mathrm{lb})$.

ORDERING INFORMATION

LOM-510A-110 Digital Micro-ohmmeter w/LOM-501 test clips; 110 Vac oprtn.
LOM-510A-220 Digital Micro-ohmmeter w/LOM-501 test clips; 220 Vac oprtn.
LOM-510/20 Digital Micro-ohmmeter, w/20 mV dry circuit option, and w/LOM-501 test clips

LOM-530 Calibration Kit for LOM 510-A
BP-511 Battery Pack, AC Source, $115 \mathrm{~V}, 60 \mathrm{~Hz}, 40 \mathrm{~W}$ (see p. 45)

LOM-512 Computer Interface-Digital Comparator for Model LOM-510A.
Kelvin Test Clips (pair, length 1 meter)

LOM-501A	Kelvin Test Clips (pair, length 2 meters)
LOM-502	Kelvin Test Clips, without cable (pair)
LOM-503	Kelvin Test Clips, E-Z Hooks (length 1 meter)
LOM-504	Kelvin Test Clips, Heavy Duty, 2 inch jaws pair, length
	1 meter)
LOM-506	Kelvin Microprobes (pair, length 1 meter)
LOM-506-1	Replacement Microprobes, set of 4
BP-511-1	Adapter Cable, power, connects LOM-510A to BP- 511, (supplied with model BP-511)
LOM-512-1	Adapter cable, data, connects LOM-510A to LOM- 512, (supplied with model LOM-512)
LOM-513	Coupler Kit (attaches BP-511 or LOM-512 to LOM-

TEL: (516) 334-5959 • (800) 899-8438 • FAX: (516) 334-5988

BP-511

The $600 \vee \mathcal{A}, 20 \mathcal{V a c} 60 \mathcal{H z}$ output of the Mode $\mathcal{B P}$ - 511 Battery Driven ac Power Source can be used to operate virtually any tool, IET instrument, or other electronic device in the field or other location where normal power is
not available. It fias been used to operate oscilloscopes, $\mathcal{D V} \mathcal{M}^{\prime} s$, and other instruments as well as soldering irons and power tools.

- Makes almost any lab instrument portable
- Small size
- Up to 600 VA, 345 W
- Charging and low battery indicators

SPECIFICATIONS

Outputs: $120 \mathrm{~V}, 60 \mathrm{~Hz}$; other voltages and frequencies available.
Output Power: 700 VA, 345 W.
Output Voltage Regulation: PWM sine wave $120 \mathrm{~V} \pm 5 \%$
Output Frequency Regulation: $60 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$.

Indicators: Line power status; battery power status; and battery low status.

Charge Power Requirements: $105-125 \mathrm{~V}$ or $210-250 \mathrm{~V}$, $50-60 \mathrm{~Hz}$.

Battery Recharge Time: 2-4 hours to 90\%.
Operating Temperature: +32 to $+104^{\circ} \mathrm{F}$
Dimensions: 13.3 cm W $\times 27.3 \mathrm{~cm} \mathrm{H} \times 18.4 \mathrm{~cm} \mathrm{D}$
(5.25" x 10.75" x 12.0")

Weight: 8.6 kg (19 lb).

Please see the Remote programming software and hardware tools in the PRS Series pp 23-26.

Part 2

Standards and Instruments formerly manufactured by GenRad

 STANDARDS • DECADES • STROBES • BRIDGES. AUDIO
1482 Standard Inductor p. 51 1565-B Sound Level Meter p. 70
1491 Decade Inductor. p. 53 1562-A Sound Level Calibrator p. 71
1404 Standard Capacitor p. 55 1531-AB and 1538-A Strobes p. 72
1408 Standard Capacitor p. 57 1539-A Stroboscopic Light Source p. 74
1409 Standard Capacitor. p. 58 1542-B Strobotac ${ }^{\circledR}$ Stroboscope p. 76
1412-BC Decade Capacitor p. $60 \quad 1546$ Strobotac $^{\circledR}$ Digital Stroboscope p. 78
1413 Precision Decade Capacitor p. 62 1620-A Precision Cap. Meas. System p. 80
1417 4-Terminal Capacitance Standard p. 641621 High Precision Cap. Meas. System p. 85
1422 Precision Variable Air Capacitor p. 66
Other GenRad Products

\qquad
Consult IET
1433 Precision Decade Resistor p. 68

The 1482 is an accurate, fighly stable standard of self. inductance for use as a lowfrequency reference or work. ing standard in the laboratory. Records extending over 40 years, including those of inductors that traveled to national laboratories in severalcountries for calibration, showlongterm stability well within $\pm 0.01 \%$., typically muchlower.

- A standard for national laboratories
- Stability within $\pm 0.01 \%$ per year; typically much better
- Values from $10 \mu \mathrm{H}$ to 10 H
- Standard for quality factor
- Low, known temperature coefficient
- Self-shielding toroidal design

Model 1482 Precision Inductor

Each inductor is a uniformly wound toroid on a ceramic core. It has a negligible external magnetic field and hence essentially no pickup from external fields. The inductor is resiliently supported in a mixture of ground cork and silica gel, after which the whole assembly is cast with a potting compound into a cubical aluminum case. Sizes
of 1 mH and above have three terminals, two for inductor leads and the third connected to the case, to provide either a two- or threeterminal standard. The $100 \mu \mathrm{H}$ size has three additional terminals for the switching used to minimize connection errors.

SPECIFICATIONS

Inductance Range: See table.
Accuracy of Adjustment: See table.
Calibration: A certificate of calibration is provided with each unit, giving measured values of inductance at 100, 200, 400, and 1000 Hz , with test conditions and method of measurements specified. These values are obtained by comparison, to a precision, typically, of better than $\pm 0.005 \%$, with standards whose absolute values, traceable to the International System of Units (SI), are known to an accuracy typically of $\pm(0.02 \%+0.1 \mu \mathrm{H})$ at $100 \mathrm{~Hz} ;(0.1 \%+0.1 \mu \mathrm{H})$ for the 1482-B

Stability: Inductance change is less than $\pm 0.01 \%$ per year
DC Resistance: See table for representative values. A measured value of resistance at a specified temperature is given on the certificate of calibration.

Low-Frequency Storage Factor Q:
See table for representative values of Q at 100 Hz (essentially from dc resistance). An individual value of Q is given on each certificate of calibration.

Temperature Coefficient of Inductance: Approximately 30 ppm/ ${ }^{\circ} \mathrm{C}$. Small temperature corrections may be computed from resistance changes.

A 1\% increase in resistance, produced by temperature increase of $2.54^{\circ} \mathrm{C}$ corresponds to 0.0076% increase in inductance.

Resonant Frequency: See table for representative values. A measured value is given on the certificate of calibration.

Maximum Input Power: For a rise of $20^{\circ} \mathrm{C}, 3 \mathrm{~W}$; for precise work, a rise of $1.5^{\circ} \mathrm{C}, 200 \mathrm{~mW}$. See table for corresponding current limits.

Terminals: 5-way binding posts with $3 / 4$-in spacing with removable ground strap.
Dimensions: $16.6 \mathrm{~cm} \mathrm{H} \times 16.6 \mathrm{~cm}$ W x 20.4 cm D (6.5" x $6.5^{\prime \prime}$ x 8 ").

Weight: $5.3 \mathrm{~kg}(11.5 \mathrm{lb})$ net, $6 \mathrm{~kg}(13 \mathrm{lb})$ shipping.

| Contents |
| :---: | :---: |
| p. 2 | | Applic. |
| :---: |
| pp. 4-8 |
| Selection |
| pp. 9-11 | | Products |
| :---: |
| pp. 12-87 | | GenRad |
| :---: |
| products |
| pp. $50-87$ | | Index |
| :---: |
| p. 89 |

1482 Series
p. 2 of 2

Description	Nominal Inductance	Adjustment Accuracy (\%)	*Resonant Frequency (kHz)	*dc Resistance (Ω)	*Q at 100 Hz	mA rms for:	
						200 mW	3 W
1482-AA	$10 \mu \mathrm{H}$	$\pm 1 \%$	4500	0.03	0.75	2500	9000
1482-A	$50 \mu \mathrm{H}$	± 0.5	3100	0.039	0.81	2260	8770
1482-B	$100 \mu \mathrm{H}$	± 0.25	2250	0.083	0.76	1550	6010
1482-C	$200 \mu \mathrm{H}$	± 0.25	1400	0.15	0.84	1150	4470
1482-D	$500 \mu \mathrm{H}$	± 0.1	960	0.38	0.83	725	2810
1482-E	1 mH	± 0.1	800	0.84	0.75	490	1890
1482-F	2 mH	± 0.1	580	1.52	0.83	360	1400
1482-G	5 mH	± 0.1	320	3.8	0.83	230	890
1482-H	10 mH	± 0.1	220	8.2	0.77	156	600
1482-J	20 mH	± 0.1	145	14.5	0.87	117	450
1482-K	50 mH	± 0.1	84	36.8	0.85	74	280
1482-L	100 mH	± 0.1	71	81	0.78	50	192
1482-M	200 mH	± 0.1	39.0	109	1.15	43	166
1482-N	500 mH	± 0.1	24.5	280	1.12	27	103
1482-P	1 H	± 0.1	14.6	616	1.02	18	70
1482-Q	2 H	± 0.1	10.6	1125	1.12	13.3	52
1482-R	5 H	± 0.1	6.8	2920	1.08	8.3	32
1482-T	10 H	± 0.1	4.9	6400	0.98	5.6	22

*Representative values. Actual values given on certificate

ORDERING INFORMATION

1482-9700
1482-9701
1482-9702
1482-9703
1482-9704
1482-9705
1482-9706
1482-9707
1482-9708

1482-AA Standard Inductor, $10 \mu \mathrm{H}$
1482-A Standard Inductor, $50 \mu \mathrm{H}$
1482-B Standard Inductor, $100 \mu \mathrm{H}$
1482-C Standard Inductor, $200 \mu \mathrm{H}$
1482-D Standard Inductor, $500 \mu \mathrm{H}$
1482-E Standard Inductor, 1 mH
1482-F Standard Inductor, 2 mH
1482-G Standard Inductor, 5 mH
1482-H Standard Inductor, 10 mH

1482-9710
1482-9711
1482-9712
1482-9713
1482-9714
1482-9716
1482-9717
1482-9718
1482-9720

1482-J Standard Inductor, 20 mH
1482-K Standard Inductor, 50 mH
1482-L Standard Inductor, 100 mH
1482-M Standard Inductor, 200 mH
1482-N Standard Inductor, 500 mH
1482-P Standard Inductor, 1 H
1482-Q Standard Inductor, 2 H
1482-R Standard Inductor, 5 H
1482-T Standard Inductor, 10 H IET LABS, INC.

The 1491 Decade Inductor is an assembly of several $D e$. cade-Inductor Units in a single metalcabinet. The units have no electricalconnection to the panel, 6 ut a separate ground terminal is provided, wfich can be connected to the adjacent low terminal, le ading to the smallest decade.

- Shielded toroidal cores for small mutual inductance and minimal effect from external fields
- Sealed against moisture for long-term stability
- Excellent as a moderately precise standard of

Model 1491 Precision Inductor inductance

- High-Q, 200 and above

These inductance decades are convenient elements for use in wave filters, equalizers, and tuned circuits throughout the range of audio and low radio frequencies. As components in oscillators, analyzers, and similar equipment, they are especially useful during the preliminary design period, when you need to vary circuit elements

Figure 1: Percentage change in normal and incremental inductance with ac and bias current. Incremental curve is limited to and ac excitation less than I_{1}.

Figure 2: Variation of inductance with frequency for the 1491 Decade Inductors.
over relatively wide ranges to determine optimum operating values. As moderately precise standards of inductance they have values of low-frequency storage factor, Q , that are much larger than those of air-core coils.

Figure 3: Variation to Q for the maximum inductance at low excitation levels. Dashed curves correspond to use with chassis floating.

SPECIFICATIONS

Frequency Characteristics: Percentage increase in effective series inductance (above the zero-frequency value, Lo) may be obtained by interpolation in accompanying graph (see Figure 2) for any setting to the highest-value decade used, when LOW terminal is grounded to cabinet.

Zero Inductance: Approximately $1 \mu \mathrm{H}$
Maximum Voltage: 500 V rms. Switch will break circuit at 500 V if turned rapidly, but voltages above 150V may cause destructive arcing with switch between detent positions.

Accuracy (Low Frequency, Low Signal Level):
Inductance Per Step

Model	$100 \mu \mathrm{H}$	1 mH	10 mH	100 mH	1 H
$1491-9704$	$\mathrm{~N} / \mathrm{A}$	$\pm 2 \%$	$\pm 1.6 \%$	$\pm 0.8 \%$	$\pm 0.8 \%$
$1491-9707$	$\pm 2 \%$	$\pm 2 \%$	$\pm 1.6 \%$	$\pm 0.8 \%$	$\pm 0.8 \%$

RMS $\mathrm{I}_{1}(\mathrm{~mA})$					
Switch Setting		0.1\% Increase	0.25\% Increase		
		$100 \mu \mathrm{H}$	Inductance per Step		
1	141	17	5.4	1.7	. 54
2,3,4	100	12	3.8	1.2	. 38
5,6,7,8,9,10	63	8	2.4	0.8	. 24
Maximum 1	4 A	1.5 A	500 mA	150 mA	50 mA

Change in Inductance with Current: Fractional change in initial inductance with AC current for each type of toroid is shown in the normal curves, Figure 1, in terms of the ratio of the operating current, I, to I_{1} the current for 0.25% change, solid line (0.1%, broken line). For ratios below unity, inductance change is directly proportional to current. Values of I_{1}, listed below, are approximate and are based on the largest inductor in the circuit for each setting.

Storage Factor Q: See Figure 3.
dc Resistance: Approximately 45Ω per Henry.

Storage Factor Q: See Figure 3.
DC Resistance: Approximately 45Ω per Henry.
Temperature Coefficient: Approximately $-25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ between 16° and $32^{\circ} \mathrm{C}$

Terminals: Binding posts on $3 / 4$-in centers; separate ground terminal provided.
Mechanical: Lab-bench cabinet.
Dimensions: 22.3 cm H x 43.2 cm W x 16.6 cm D
(8.75" x 17" x 6.5 ").

1404 Series

These capacitors have beendesigned as primary reference standards of capacitance with which working standards can be compared.IET's $1620 \mathcal{A}$ and 1621 Precision Capacitance Me asuring Systems are particularly well suite d for this purpose and can be conveniently used to calibrate accurately a wide range of working standards in terms of a 1404 Refer. ence S tandard Capacitor.

- A national laboratory standard
- For calibrating working standards
- Standard for dissipation factor
- Available in 10, 100 and 1000 pF
- 20 ppm/year stability, typically better
- Hermetically sealed in dry nitrogen

Model 1404 Standard Capacitor

In combination with an accurately known external resistor, this capacitor also becomes a standard of dissipation factor.

All critical parts of the plate assembly are made of invar for stability and low temperature coefficient. After heat cycling and adjustment the assembly is mounted in a heavy brass container, which after evacuation, is filled with dry nitrogen under pressure slightly above atmospheric and sealed. The container is mounted on an aluminum
panel and protected by an outer aluminum case. Each capacitor is subjected to a series of temperature cycles to determine hysteresis and temperature coefficients and to stabilize the capacitance.
Two locking bnc coaxial connectors are used as terminals (other connectors such as 874 type are available as options). The outer shell of one is connected to the case, but the outer shell of the other is left unconnected to permit the capacitor to be used with an

Figure 1
Equivalent circuit showing direct capacitance, C_{D}, and average values of residual inductance, L, and terminal capacitances, C_{H} and C_{L}.
$C_{D}=1000 \mathrm{pF}$ for $1404-\mathrm{A}$, 100 pF for 1404-B, and 10 pF for $1404-\mathrm{C}$.

1454-1

SPECIFICATIONS

Calibration: A certificate of calibration is supplied with each capacitor, giving the measured direct capacitance at 1 kHz and $23^{\circ} \pm 1^{\circ} \mathrm{C}$. The measured value is obtained by a comparison to a precision better than $\pm 1 \mathrm{ppm}$ with working standards whose absolute values are known to an accuracy of $\pm 5 \mathrm{ppm}$, determined and maintained in terms of reference standards periodically measured by the National Institute of Standards and Technology.

Adjustment Accuracy: The capacitance is adjusted before calibration with an accuracy of $\pm 5 \mathrm{ppm}$ to a capacitance about 5 ppm above the nominal value relative to the capacitance unit maintained by the reference standards.

Stability: Long term drift is less than 20 ppm per year. Maximum change with orientation is 10 ppm and is completely reversible.
Temperature Coefficient of Capacitance: $2 \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 1404-A and $-\mathrm{B}, 5 \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $1404-\mathrm{C}$, from $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. A measured value with and accuracy of $\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is given on the certificate.

Temperature Cycling: For temperature cycling over range from
$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$, hysteresis (retraceable) is less than 20 ppm at $23^{\circ} \mathrm{C}$.

Dissipation Factor: Less than 10^{-5} at 1 kHz .
Residual Impedance: See Figure 1 for typical values of internal series inductance and terminal capacitance.

Max Voltage: 750 V .
Terminals: Two BNC coaxial connectors (legacy locking G874 coaxial connectors are available). Outer shell of one connector is ungrounded to permit capacitor to be used with external resistor as a dissipation factor standard.

Mechanical: Lab-bench cabinet.
Dimensions: 16.9 cm H x 17.2 cm W x 20.4 cm D
(6.63" x $6.75^{\prime \prime} \times 8$ ").

Weight: $3.9 \mathrm{~kg}(8.5 \mathrm{lb}$.$) net, 6.4 \mathrm{~kg}(14 \mathrm{lb}$.$) shipping.$

1408-9706 Capacitor Series

Ultra- figh stability. The continuously improving accuracy of capacitor calibrations by $\mathcal{N} I S \mathcal{T}$ Grings a better knowle dge of capacitance to standards laboratories - provided, of course, the laboratories have adequate reference standards. The 1408 Reference Standard Capacitors, with their figh stability, are suitable for calibration in parts in 10^{7}. The 1616 Precision Capacitance Bridge is fighly recommended for accurate calibration of a wide range of working standards from such a reference.

- 10 pF and 100 pF combination
- High stability
\mathcal{T} fis unit includes two standards, 10 pF and 100 pF , plus a self-contained air bath whose temperature is held constant to within 0.01 per year to assure the utmost stability of the standards. Since ticarries its own environment, it is well adapted for use in laboratories without an oil bath or closely-controlled ambient temperature or in portable laboratories and calibration centers. The air bath operates from 12 volts so that it is an easy matter to transport it under power at all times.
- Low voltage coefficient

SPECIFICATIONS

Nominal Value: 10 pF and 100 pF .

Calibration: A certificate of calibration is supplied with each capacitor, giving the measured direct capacitance at 1 kHz and at the specified temperature near $30^{\circ} \mathrm{C}$, the air-bath temperature. The measured value is obtained by a comparison to a precision better than 0.5 ppm with standards whose values are determined and maintained by periodic calibrations made by NIST.
Adjustment Accuracy: $\pm 5 \mathrm{ppm}$.
Stability: Estimated to be better than 1 ppm per year.
Temperature Coefficient: $2 \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 100 pF ;

$$
5 \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { for } 10 \mathrm{pF} .
$$

Temperature Cycling: from 0 to $60^{\circ} \mathrm{C},<1 \mathrm{ppm}$ hysteresis at $30^{\circ} \mathrm{C}$.

Electrical:

Dissipation Factor: $<10^{-5}$ at 1 kHz . Voltage: 750 V max.
Residual Impedances: See Figure 1

Fig. 1

Value $(p F)$	LH, LL $(\mu \mathrm{H})$	CD (pF)	$C H$ (pF)	CL (pF)
10	0.05	100	30	28
100	0.05	100	30	28

Terminals: Two locking G874 coaxial connectors or BNC connectors; various patch cords available.
Air-Bath Characteristics:
Temperature: $30^{\circ} \mathrm{C}$ nominal with stability of $0.01^{\circ} \mathrm{C} /$ year, $<0.005^{\circ} \mathrm{C} /$ hour if ambient temperature is kept within $1^{\circ} \mathrm{C}$. Temperature Coefficient: $0+0.05 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from 17 to $29^{\circ} \mathrm{C}$ ambient temperature; thermometer well provided for calibration.
General: Connectors can be made to the front or the rear as your application dictates. A 12-volt input is provided to maintain a constant air-bath temperature even while the unit is in transit.

Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to $60 \mathrm{~Hz}, 5 \mathrm{~W} ; 12 \mathrm{~V}$ at 0.4 A; for dc operation, battery connectors provided on rear.
Mechanical:
Dimensions: $22.2 \mathrm{~cm} \mathrm{H} \times 21.4 \mathrm{~cm}$ W x 40.7 cm D
(8.72" x 8.42" x 16"); (approx.)

Weight: $12 \mathrm{~kg}(25 \mathrm{lb}$.$) net, 16 \mathrm{~kg}$ (34 lb.$)$ shipping; (approx.)

Highly stable cost-effective capacitance standards with low temperature coefficient, low losses and a wide range of values.

- $0.001 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$
- $\pm 0.01 \% /$ year stability
- Verify meter and instrumentation calibration
- Two-to-five terminal configuration, depending on model

Model 1409 Standard Capacitance

SPECIFICATIONS

Calibration Accuracy: 100 ppm for $1 \mathrm{nF} ; 0.01 \%$ for $1 \mu \mathrm{~F}$ and under; 0.04% for $100 \mu \mathrm{~F}$ and under; and 0.4% for $1000 \mu \mathrm{~F}$;

At test frequency of 1 kHz for up to $5 \mu \mathrm{~F} ; 100 \mathrm{~Hz}$ for over $5 \mu \mathrm{~F}$.
2-terminal and 3-terminal measurements are provided.
Stability: <0.01\% per year.
Temperature Coefficient: $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $1 \mu \mathrm{~F}$ and under; $-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for capacitance to $190 \mu \mathrm{~F}$; $-150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $1000 \mu \mathrm{~F}$.
Operating Temperature: $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Dissipation Factor: $0.01 \mu \mathrm{~F}-1 \mu \mathrm{~F} ; 0.0003$ at 1 kHz ;
$10 \mu \mathrm{~F} ; 0.0005 ; 100 \mu \mathrm{~F} ; 0.001$;
$1000 \mu \mathrm{~F} ; 0.002$ at 100 Hz and $120 \mathrm{~Hz} ; 0.02$ at 1 kHz .
Series Inductance: Typically $<0.06 \mu \mathrm{H}, 0.01 \mu \mathrm{~F}-1 \mu \mathrm{~F}$.
Series Resistance at $1 \mathrm{MHz}: 0.02 \Omega, 0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F} ; 0.03 \Omega, 1 \mu \mathrm{~F}$.
Frequency Characteristics: Varies as $\sqrt{\boldsymbol{f}}$ above 100 kHz . See figure 1 .
Leakage Resistance: 5,000 ohm-Farads or $100 \mathrm{G} \Omega$, whichever is less.
Max Voltage: See table.
Test Conditions: $\left(100 \mathrm{~Hz}, 120 \mathrm{~Hz}\right.$ and 1 kHz at $23^{\circ} \mathrm{C}$; $<1 \mu \mathrm{~F} ; 5$ - terminal measurement for values $1 \mu \mathrm{~F}, 1 \mathrm{MHz}$ or other available.
Capacitor Type: Hermetically sealed silvered mica for 100 pF to $1 \mu \mathrm{~F}$; hermetically sealed polystyrene for $10 \mu \mathrm{~F}$; hermetically sealed polycarbonate for $>10 \mu \mathrm{~F}$.
Terminals: Three binding posts, for values up to $1 \mu \mathrm{~F}$; five binding posts, for values over $1 \mu \mathrm{~F}$.

Dimensions:
-F/L/T:
-Y:
$\left(5.6^{\prime \prime} \times 3.2^{\prime \prime} \times 2.7\right.$ ")
$-10 \mu \mathrm{~F} / 100 \mu \mathrm{~F}: 86 \mathrm{~cm} \mathrm{H} \times 10.5 \mathrm{~cm} \mathrm{~W} \times 12.7 \mathrm{~cm} \mathrm{D}$
(3.4" x 4.15" x 5.0")
$-1000 \mu \mathrm{~F}: \quad 8.6 \mathrm{~cm} \mathrm{H} \times 30.5 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{D}$ (3.4" $\times 12^{\prime \prime} \times 3.5^{\prime \prime}$)

Weight:
-F/L/T:
$\sim 0.6 \mathrm{~kg}(1.25 \mathrm{lb}$.
$-\mathrm{Y}: \quad \sim 1.1 \mathrm{~kg}(2.25 \mathrm{lb}$.
$-10 \mu \mathrm{~F} / 100 \mu \mathrm{~F}: \sim 0.4 \mathrm{~kg}$ (0.8 lb.$)$
$-1000 \mu \mathrm{~F}: \sim 2 \mathrm{~kg}(4.5 \mathrm{lb}$.

Model	Value	Adjust- ment Ac- curacy	Dissipation Factor (typical)	Maximum Voltage** (V)
$1409-\mathrm{F}$	1 nF	$\pm 0.02 \%$	0.0003	500
$1409-\mathrm{L}$	10 nF	$\pm 0.02 \%$	0.0003	500
$1409-\mathrm{T}$	100 nF	$\pm 0.02 \%$	0.0003	500
$1409-\mathrm{Y}$	$1 \mu \mathrm{~F}$	$\pm 0.02 \%$	0.0003	500
$1409-10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$\pm 0.04 \%$	0.0005	$44 \mathrm{Vrms}+$
$1409-100 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	$\pm 0.05 \%$	0.001	$22 \mathrm{Vrms}+$
$1409-1000 \mu \mathrm{~F}$	$1000 \mu \mathrm{~F}$	$\pm 0.4 \%$	0.001	$22 \mathrm{Vrms}+$
$1409-\mathrm{X}$	Custom	$*$	$*$	$*$

+ Maximum allowable Vrms; subject to maximum $\mathrm{Vdc}=50 \mathrm{~V}$ and $\max \operatorname{Vrms}=(39000 / \mathrm{f})$ for $\mathrm{C}=10 \mu \mathrm{~F}$; (26000/f) for $\mathrm{C}=19 \mu \mathrm{~F}$; (13000/f) for $C \geq 100 \mu \mathrm{~F}$; (9500/f) for $\mathrm{C} \geq 1000 \mu \mathrm{~F}$, where $f=$ frequency (in Hz).
* Depends on Custom value
** Peak up to 10 kHz .

1409 Series

p. 2 of 2

Figure 1
Change in capacitance as a function of frequency for typical 1409 Capacitors. The $1-\mathrm{kHz}$ value on the plot should be used as a basis of reference in estimating frequency errors.

Figure 2
Dissipation factor as a function of frequency

$1409-9706$	$1409-\mathrm{F}$,	$0.001 \mu \mathrm{~F}$
$1409-9712$	$1409-\mathrm{L}$,	$0.01 \mu \mathrm{~F}$
$1409-9720$	$1409-\mathrm{T}$,	$0.1 \mu \mathrm{~F}$
$1409-9725$	$1409-\mathrm{Y}$,	$1.0 \mu \mathrm{~F}$

$1409-9730$	1409,	$10 \mu \mathrm{~F}$
$1409-9735$	1409,	$100 \mu \mathrm{~F}$
$1409-9740$	1409,	$1000 \mu \mathrm{~F}$
$1409-9740$	1409,	Custom Value

1412 Series

Model 14 12-BC: The wide capacitance range and figh resolution of this decade capacitance box make it exceptionally usefulin both laboratory and test sfop. O wing to its fine adjustment of capacitance, it is a convenient variable capacitor to use with an impedance comparator. The polystyrene dielectric used in the decade steps is necessary for applica. tions requiring low dielectric absorption and constancy of both capacitance and dissipation factor with frequency.

- Verification of calibration of LCR meters
- Capacitance measurement functions
- Verification of calibration of multimeters
- For calibrating instrumentation

For decades of polystyrene capacitors and a variable air capacitors are used, mounted in a double-shield box. The double shielding provides 2-terminal and 3-terminal capacitance's that are the same except for the capacitance between the terminals. The variable air

Figure 1

The double shielding used in the 1412-BC Decade Capacitor keeps C_{HG} very small. This capacitance is the difference between the 3-terminal and 2-terminal capacitance of the box; CLG $^{\text {is approx. }}$ 125 pF .

Model 1412-BC Decade Capacitor

- 50 pF to $>1 \mu \mathrm{~F}$
- Better than 1 pF resolution
- Accuracy of \pm ($0.5 \%+5 \mathrm{pF})$
- Low loss, leakage, dielectric absorption
capacitor with a linear $\Delta \mathrm{C}$ of 100 pF and a resolution of better than 1 pF provides continuous adjustment between the 100 pF steps of the smallest decade.

SPECIFICATIONS

Capacitance: 50 pF to $1.11115 \mu \mathrm{~F}$ in steps of 100 pF with a 0 to 100 pF variable air capacitor providing continuous adjustment with divisions of 1 pF . Capacitance for 2- and 3-terminal connections differ by about $1 \mathrm{pF}\left(\mathrm{C}_{\mathrm{HG}}\right.$ in Figure 1) C_{LC} is approximately 125 pF .

Minimum Capacitance: 50 pF with all controls set at zero.
Dielectric: Polystyrene for decade steps.
Accuracy: $\pm(0.5 \%+5 \mathrm{pF})$ at 1 kHz for total capacitance including 50 pF minimum for the 3-terminal connection.
Temperature Coefficient of Capacitance: -140 ppm/ ${ }^{\circ} \mathrm{C}$ (nominal).
Frequency Characteristics: DC Cap/ 1 kHz Cap < 1.001. At higher frequencies the increase is approximately $\Delta C / C=\left(f / f_{r}\right)^{2}$. The resonant frequency, $\boldsymbol{f}_{\mathrm{r}}$ varies from over 400 kHz for a capacitance of $1 \mu \mathrm{~F}$ to 27 MHz for a capacitance of 150 pF when connections are made to the front terminals. $\boldsymbol{f}_{\mathrm{r}}$ is about 300 kHz and 70 MHz for rear connections and the same capacitance.

Max Operating Temperature: $65^{\circ} \mathrm{C}$.

Dielectric Absorption: (Voltage Recovery): 0.1\% max.
Dissipation Factor: 150 to 1000 pF, 0.001 max, at 1 kHz ; over $1000 \mathrm{pF}, 0.0002$ max, at 1 kHz .

Insulation Resistance: $10^{12} \Omega \mathrm{~min}$.
Max Voltage: 500 V peak, up to 35 kHz .
Terminals: Four bindings posts with grounding link are provided on the front panel. Two of the binding posts are connected to the case and located for convenient use with patch cords in 3-terminal applications. Access is also provided to rear terminals for relay-rack application.

Mechanical: Lab-bench cabinet; brackets provided for rack mount.
Dimensions: $0.89 \mathrm{~cm} \mathrm{H} \times 43.9 \mathrm{~cm}$ W x 15.3 cm D ($3.5^{\prime \prime} \times 17.25^{\prime \prime} \times 3.5^{\prime \prime}$)

Weight: $3.9 \mathrm{~kg}(8.5 \mathrm{lb}$.$) net, 4.6 \mathrm{~kg}(10 \mathrm{lb}$.$) shipping.$
1412-9410 1412-BC Decade Capacitor

1413 Series

 p. 1 of 2The 1413 is not only a precision standard, it is a systems component as well-connections are made at the rear for this purpose.

Model 1413 Decade Capacitor

- A laboratory standard
- For calibrating working standards
- Standard for dissipation factor
- Verification \& calibration of LCR meters
- Working standard
- Capacitance measurement functions
- Verification of calibration of multimeters
- For calibrating instrumentation

Six precision decades are employed to provide a range of 0 to $1.11111 \mu \mathrm{~F}$ in increments as small as 1 pF and with an accuracy of $0.05 \%+0.5 \mathrm{pF}$. Air capacitors are used for the two lower decades and precision silvered-mica capacitors are used for the remainder. The lower four decades contain adjustments that are factory set but accessible for readjustment later if desired.

The shielding is divided into two parts arranged to provide low terminal-to-guard capacitance. When the two shields are connected together, the 1413 becomes a well-shielded three-terminal capacitor with an extremely low zero capacitance, suitable for variety of applications

- 0 to $>1 \mu \mathrm{~F}$
- 0.05\% basic accuracy
- 6-digit resolution
- 3-terminal connections

Contents
p. 2
:---:
pp. 4-8
:---:
pp. 9-11
:---:
pp. 12-87
:---:
products
pp. 50-87
:---:
p. 89

1413 Series
 p. 2 of 2

SPECIFICATIONS

Range: 0 to $1.11111 \mu \mathrm{~F}$, controlled by six in-line-readout dials
Accuracy: $\quad \pm(0.05 \%+0.5 \mathrm{pF})$ at 1 kHz
Stability: $\quad \pm(0.01 \%+0.1 \mathrm{pF})$ per year.
Frequency: See Figure 1.

Temperature Coefficient: Approx. $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from 10 to $50^{\circ} \mathrm{C}$
Zero Capacitance: $<0.1 \mathrm{pF}$.
Voltage Rating: 500 V pk max up to 10 kHz .

	1 pF to 100 pF	101 pF to 1000 pF	1001 pF to 2000 pF	2001 pF to $0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$ to $1.11111 \mu \mathrm{~F}$
Dissipation Factor: Max at 1 kHz	0.002	0.001	0.0005	0.0003	0.0004
Insulation Resistance: 3 term., after 2 min at 500 V dc	$\geq 5 \times 10^{10} \Omega$				$\geq 5 \times 10^{9} \Omega$
Terminal Capacitance: Max high to case high to guard low to guard	4 pF 85 pF 45 pF	8 pF 110 pF 70 pF	10 pF 125 pF 80 pF	30 pF 165 pF 110 pF	60 pF 200 pF 120 pF

Interface: Connections: 2 rear-mounted G874 locking connectors.
Mechanical: Convertible-bench cabinet;

Dimensions: $14.2 \mathrm{~cm} \mathrm{H} \times 42.3 \mathrm{~cm} \mathrm{~W} \times 30.4 \mathrm{~cm}$ D
(5.59" x 17" x 11.96 ")

Rack, 13.3 cm H x 48.3
cm W x 27.7 cm D (5.22" x 19" x 10.9")
Weight: Bench, 11 kg (23 lb.$)$ net, 14 kg (29 lb.$)$ shipping

$1413-9700$	1413	Precision Decade Capacitor Bench
$1413-9701$	1413	Precision Decade Capacitor Rack Model

1417 Series

p. 1 of 2

The 1417 Four-Terminal Capacitance Standard consists of a $1 \mu \mathcal{F}$ standard capacitor and two precise inductive voltage dividers used to scale the value of the $1 \mu \mathcal{F}$ capacitor up to 1 \mathcal{F} in decade steps. This arrangement provides accuracy and stability unattainable with very higf-value true capacitors.

- A laboratory standard
- Standard for dissipation factor
- Verification \& calibration of LCR meters

- Working standard

- Verification of calibration of multimeters
- Capacitance measurement functions
- For calibrating instrumentation
- $1 \mu \mathrm{~F}$ to 1 F in decade steps

In addition to the seven direct-reading capacitance values, an infinite number of intermediate or higher capacitance values can be obtained by using external capacitors. An external capacitor is simply connected to the 1417's external standard terminals, either directly or in parallel with a $1 \mu \mathrm{~F}$ internal standard, and the resulting capacitance is scaled in value by the 1417's inductive voltage dividers.
The direct - reading accuracy of the 1417 is $\pm 0.25 \%$ plus ratio accuracy at test frequencies of 100,120 , or 1000 Hz . Since the 1417 scaling ratios are precise and repeatable, better accuracy can be obtained by measuring the actual value of the internal $1 \mu \mathrm{~F}$ standard or of an external standard before scaling.

The 1417 also servers as a standard of dissipation factor (D). The dissipation factor of the 1417 is intentionally set to 0.01 at test frequencies of 100,120 and 1000 Hz . Basic D accuracy at these frequencies is ± 0.001.

The 1417 may also be used as a two-terminal capacitance standard when higher D values can be tolerated. In a two-terminal configuration, D is less than 1 for capacitance values up to $1000 \mu \mathrm{~F}$ at frequencies below 150 Hz . This feature allows the 1417 to be used in calibrating the higher capacitance ranges of popular universal or RLC bridges.

One additional feature of importance is that all the 1417's parameters are measurable (without) disassembly) so, in effect, its ultimate accuracy depends on the accuracy of the external measurement equipment.

Model 1417 Capacitance Standard

- 0.25\% direct-reading capacitance accuracy
- 0.1\% or better ratio accuracy
Dissipation - factor standard

Basic Circuit Diagram

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	Index $\text { p. } 89$

1417 Series

SPECIFICATIONS

Capacitance Value	Ratio Accuracy		D Accuracy		Approximate Termanal Impedance		$\begin{aligned} & \text { E Max* } \\ & \text { AC (V) } \end{aligned}$
(Internal Standard)	100 \& 120 Hz	1 kHz	100 \& 120 Hz	1 kHz	ZA (Ω)	ZB (Ω)	
$1 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ $100 \mu \mathrm{~F}$ 1 mF 10 mF 100 mF 1 F	$\begin{gathered} 0.02 \% \\ 0.02 \% \\ 0.02 \% \\ 0.03 \% \\ 0.1 \% \\ 0.25 \% \end{gathered}$	------- 0.04% 0.04% 0.06% 0.2% ---------	$\begin{gathered} \pm 0.001 \\ \pm 0.003 \\ \pm 0.01 \end{gathered}$	$\begin{aligned} & \pm 0.001 \\ & \pm 0.001 \\ & \pm 0.001 \\ & \pm 0.002 \\ & \pm 0.005 \\ & -------------1 \end{aligned}$	$\begin{gathered} 0.03 \\ 7.0 \\ 3.1 \\ 1.1 \\ 0.37 \\ 0.13 \\ 0.04 \end{gathered}$	$\begin{gathered} 0.03 \\ 15.5 \\ 6.4 \\ 2.2 \\ 0.72 \\ 0.23 \\ 0.05 \end{gathered}$	$\begin{gathered} 20 \\ 6 \\ 2 \\ 0.8 \\ 0.5 \\ 0.25 \\ 0.06 \end{gathered}$

Capacitance:

Internal Standard: 1μ F in 7-switch-selected decade values External Standard: Indicated capacitance, multiplied by C ext $/ \mu \mathrm{F}$.
Capacitance Accuracy, Direct-Reading: 0.25% plus ratio accuracy at $100 \mathrm{~Hz}, 120 \mathrm{~Hz}$ and $1 \mathrm{kHz}, 20$ to $25^{\circ} \mathrm{C}$, with low applied voltage ($<1 / 4 \mathrm{E}$, max) using internal standard and a proper four-terminal measurement. (May also be used as a two-terminal standard, with a $D<1$ and a capacitance change from the four-terminal value of $<1 / 2 \%$ up to 1 mf at 120 Hz or less).
Capacitance Ratio: Accuracy see table above.
Dissipation Factor: 0.01 at $100 \mathrm{~Hz}, 120 \mathrm{~Hz}$ and 1 kHz . For D accuracy, see table.

Terminal Impedance: See figure and table (approximate values given).

Temperature Coefficient: Approximately $-140 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Voltage Characteristic: Approximately +0.3 \% change from 0_{V} to
E max (see table) at 100 Hz . Less at higher frequencies.
Mechanical: Bench cabinet.
Dimensions: $14.7 \mathrm{~cm} \mathrm{H} \times 21.5 \mathrm{~cm} \mathrm{~W} \times 13.2 \mathrm{~cm} \mathrm{D}$
($5.9^{\prime \prime} \times 8.5^{\prime \prime} \times 5.25$ ").
Weight: $52.7 \mathrm{~kg}(6 \mathrm{lb}$.$) net, 5 \mathrm{~kg}(11 \mathrm{lb}$.$) shipping.$

The 1422 is a stable and precise variable air capacitor intended for use as a continuously adjustable standard of capacitance. One of the most important applications is an $\mathcal{A C}$ bridge me asurements, either as a built-in standard for substitution me asurements. It is available in a variety of ranges, terminal config. urations, and scale arrangements to permit selection of precisely the required characteristics.

- A laboratory standard
- For calibrating working standards
- Working standard
- Capacitance measurement functions

Model 1422 Precision Capacitor

- For substitution measurements
- For calibrating instrumentation
- Stability: better than 0.02\% full scale per year
- Settleable to 40 ppm

Two-terminal - The 1422-D is a dial-range, two-terminal capacitor, direct reading in total capacitance at the terminals.

Three-terminal - The 1422-CB and -CL are three-terminal capacitors with shielded coaxial terminals for use in three-terminal measurements. The calibrated direct capacitance is independent of terminal capacitance to ground, and losses are very low. The 1422-CL has particularly low, constant terminal capacitance, making it suitable for measurement circuits in which high capacitance to guard cannot be tolerated.

Construction - The capacitor assembly is mounted in a cast frame for rigidity. This frame and other critical parts are made of aluminum alloy selected to give the strength of brass with the lightness of aluminum. The plates of most models are also aluminum, so that all parts have the same temperature coefficient of linear expansion.
A worm drive is used to obtain high precision of setting. To avoid eccentricity, the shaft and the worm are accurately machined as one piece. The worm and worm wheel are also lapped into each other to improve smoothness. The dial end of the worm shaft runs n a self-aligning ball bearing, while the other end is supported by an adjustable spring mounting, which gives positive longitudinal anchoring to the worm shaft through the use of a pair sealed, selflubricating, preloaded ball bearings. Similar pairs of preloaded ball bearings provide positive and invariant axial location for the main or rotor shaft. Electrical connection to the rotor is made by means of a silver-alloy brush bearing on a silver-overlay drum to assure a low-noise electrical contact.

- Low temperature coefficient, low losses
- Wide selection to suit needs
- 3 different models

Stator insulation in all models is a cross-linked thermosetting modified polystyrene having low dielectric losses and very high insulation resistance. Rotor insulation, where used (Types 1422-CB and $-\mathrm{CL})$, in grade L-4 steatite, silicone treated.

Accuracy - The errors tabulated in the specifications are possible errors, i.e., the sum of error contributions from setting, adjustment, calibration, interpolation, and standards. When the capacitor is in its normal position with the panel horizontal, the actual errors are almost always smaller. The accuracy is improved when the readings are corrected using the 12 calibrated values of capacitance given on the correction chart on the capacitor panel and interpolating linearly between calibrated points. Even better accuracy can be obtained from a precision calibration of approximately 100 points on the capacitor dial, which permits correction for sight residual eccentricities of the worm drive and requires interpolation over only short intervals. This precision calibration is available for the 1422CL model. A plastic-enclosed certificate of calibration is supplied, giving corrections to one more figure than the tabulated accuracy.

SPECIFICATIONS

Accuracy:	1422 Precision Capacitors Type 1422	Two-terminal Type 1422-D	Three-terminal Type 1422-CB	Three-terminal Type 1422-CL
	Capacitance Range (Min/Max)	100/1150 pF 35/115 pF	50/1100 pF	10/110 pF
	Scale, pF/Division	0.20 .2	0.2	0.02
	Initial Accuracy: Picofarads Direct-Reading (Adjustment): Total Capacitance	1.5* 0.3*	1.5	0.1
	With Corrections from Calibration Chart (supplied) Total Capacitance			0.04
	With Corrections from Precision Calibration (extra charge) Total Capacitance			0.01
	Residuals (typical values): Series Inductance, $\mu \mathrm{H}$ Series Resistance, Ω at 1 MHz	0.06 0.10 0.04 0.05	$\begin{gathered} 0.14 \\ 0.1 \end{gathered}$	$\begin{gathered} 0.13 \\ 0.1 \end{gathered}$
	Terminal Capacitance, pF, typical high terminal to case low terminal to case	min/max scale min/max scale	$\begin{aligned} & 36 / 35 \\ & 58 / 53 \end{aligned}$	$\begin{aligned} & 34 / 33 \\ & 58 / 55 \end{aligned}$
	* Total capacitance is the capacitance added when the capacitor is plugged into a 777-Q3 Adapter			

Stability: Capacitance change with time <1 scale division (0.02% of full scale) per year

Long-term accuracy can be estimated from the stability and the initial accuracy.
Calibration: Measured values (supplied) are obtained by comparison at 1 kHz , with working standards whose absolute values are known to and accuracy of $\pm(0.01 \%+0.0001 \mathrm{pF})$. Each comparison is made to a precision better than $\pm 0.01 \%$. The values of the working standards are determined and maintained in terms of reference standards periodically calibrated by the National Institute of Standards and Technology. The indicated value of total capacitance of a twoterminal capacitor is the capacitance added when 1422 Capacitor is plugged into a 777-Q3 Adapter *. The uncertainty of this method to connection is approximate $\pm 0.03 \mathrm{pF}$.

* Gilbert Engineering Part Number 0777-9703.

Insulation Resistance: $>10^{12} \Omega$, under standard conditions ($23^{\circ} \mathrm{C}, \mathrm{RH}<50 \%$).
Maximum Voltage: 1000 V pk (all models)
Terminals: 2-terminal Model: Jack-top binding posts at standard (0.75 in) spacing. Rotor terminal connected to panel and shield. 3-terminal Models: Locking G874 coaxial connectors.
Mechanical: Lab-bench cabinet.
Dimensions: $17.8 \mathrm{~cm} \mathrm{H} \times 24.2 \mathrm{~cm} \mathrm{~W} \times 21.5 \mathrm{~cm} \mathrm{D}$
(7" $\times 9.5^{\prime \prime} \times 8.5^{\prime \prime}$).
Weight: (depending on model): 4.8 to 5.7 kg (10.5 to 12.5 lb .)net, 7 kg (15 lb.) shipping.

Resolution: Dial can be read and set to $1 / 5$ of a small division, i.e. to 0.004% of full scale. BACKLASH: Negligible for any setting reached consistently from lower scale readings; $<0.004 \%$ of full scale, for settings reached from alternate directions.
Temperature Coefficient: Approximately $+20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, for small temperature changes.
Residual Parameters: See table above. Series resistance varies as $\sqrt{\mathrm{f}}$ for $f>100 \mathrm{kHz}$; negligible, for $f<100 \mathrm{kHz}$.

Frequency Characteristic: 2-terminal model, see Figure 1. 3-terminal models: 20 and 40 MHz (approximately) resonant frequency for $1422-C B$ and -CL (each section), respectively.
Dissipation Factor: 2-terminal, loss primarily in stator supports of low-loss polystyrene (the product $\mathrm{DC}=10^{-14}$), 3-terminal, estimated D $<20 \times 10^{-6}$.

ORDERING INFORMATION

Catalog No:	Item	Name	Calibration
$1422-9704$	$1422-\mathrm{D}$	Precision Capacitor	12 points
$1422-9916$	$1422-\mathrm{CB}$	Precision Capacitor	12 points
$1422-9933$	$1422-\mathrm{CL}$	Precision Capacitor	12 points
$1422-9508$	$1422-C L P$	Precision Capacitor	~ 100

GenRad 1433 Series

p. 1 of 2

The 1433 Decade Resistors are primarily intended for precision measurement applications where their excellent accuracy, stability, and lowzero resistance are important. They are convenient resistance standards for checking the accuracy of resistance measuring devices and are used as components in $d c$ and audio frequency impedance bridges. Many of the models can be used into the

Model 1433 Precision Decade Resistor

- Excellent stability
- Low zero resistance
- May be used for RTD simulation
- Rack mount option

There is a large selection of models available, with 3 through 11 decades, covering a wide resistance range from $1 \mathrm{~m} \Omega$ to over $111 \mathrm{M} \Omega$. Each 1433 is an assembly of multiple long-contact-life switches and precision resistors in a single cabinet. The individual switches have solid silver contacts. The dials, labeled 0 to $X(=10)$, offer continuous rotation from position to position with no stops. Each dial also has an overlap 10 position to eliminate the need of having to reset all dials when passing through a decade point. The resistance per step and maximum current of each dial is clearly shown on the front panel. Electrical shielding is provided by an attractive aluminum cabinet and front panel. The resistance elements have no electrical connection to the cabinet and panel; a separate shield terminal is provided.

Figure 1:Typical Frequency Characteristics

SPECIFICATIONS

Over-all Accuracy: The difference between the resistance at any setting and at the zero setting is equal to the indicated value $\pm(0.01 \%+2 \mathrm{~m} \Omega)$. ($\pm 0.03 \%$ for $10 \mathrm{M} \Omega$ steps.)

Resistance per Step	Total Decade Resistance	$\begin{gathered} \text { Stability } \\ \text { (} \pm \mathrm{ppm} / \text { year }) \end{gathered}$	Long Term Stability ($\pm \mathrm{ppm} / 3$ years)	Temperature Coefficient ($\pm \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)	Max. Power (W/step)	Maximum current (per decade)	Maximum voltage (per step)
$1 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	100	700	50	0.025	5 A	5 mV
$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	50	350	20	0.2	4 A	40 mV
$100 \mathrm{~m} \Omega$	1Ω	30	50	20	0.25	1.6 A	0.16 V
1Ω	10Ω	10	25	20	0.6	0.8 A	0.8 V
10Ω	100Ω	10	25	15	0.6	0.25 A	2.5 V
100Ω	$1 \mathrm{k} \Omega$	10	25	5	0.6	80 mA	8 V
$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10	25	5	0.5	23 mA	23 V
$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	10	25	5	0.5	7 mA	70 V
$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	10	25	5	0.5*	2.3* mA	$230 \mathrm{~V}^{*}$
$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	10	25	10	0.5*	$0.7^{*} \mathrm{~mA}$	$700 \mathrm{~V}^{*}$
$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$	25	40	10	0.1*	0.1 * mA	1000 V*

* Subject to maximum of 2000 V.

SPECIFICATIONS

Typical Frequency Characteristics: See Figure 1.
Typical Values of Ro, Lo and C for the Decade Resistors:
Zero Resistance (Ro): $0.001 \Omega /$ decade at dc (higher for $7-10$ decades); $0.04 \Omega /$ dial at 1 MHz ; proportional to the square root of frequency above 100 kHz . Zero Inductance (Lo): $0.1 \mu \mathrm{H} /$ dial $+0.2 \mu \mathrm{H}$

Effective Shunt Capacitance (C): Value is determined largely by the highest decade in use. With the low terminal connected to the shield, a value of 15 to $20 \mathrm{pF} /$ decade may be assumed, counting decades down from the highest. Thus, if the third decade from the top is the highest resistance, a value of 45 to 60 pF may be assumed. If the highest decade in the unit is in use, the effective capacitance is 15 to 20 pF , regardless of the settings of the lower resistance decades.
Temperature Coefficient of Resistance:
$<10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 100Ω and over;
$+20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 10Ω and under;
at room temperatures.
Assembly will increase the over-all temperature coefficient of the 0.1 and 0.01Ω.
Switches: Continuous dial rotation; solid silver contacts; contact resistance of less than $1 \mathrm{~m} \Omega$; capacitance of less than 1 pF between contacts; lifetime in excess of 1 million cycles.

Maximum Voltage to case: 2000 V pk.
Terminals: Gold plated, low thermal-emf jack-top binding posts on standard 3/4" spacing. Shield terminal provided.
Mechanical: Lab-bench cabinet.

Model	Dimensions	Weight
1 decade	$\begin{gathered} 7.7 \mathrm{~cm} \mathrm{~W} \times 7.7 \mathrm{~cm} \mathrm{H} \times 8.4 \mathrm{~cm} \mathrm{D} \\ \left(3^{\prime \prime} \times 3^{\prime \prime} \times 3.3^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 0.45 \mathrm{~kg} \\ & (1.0 \mathrm{lb}) \end{aligned}$
2-4 decades	$\begin{gathered} 37.5 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(14.8^{\prime \prime} \times 3.5^{\prime \prime} \times 4\right. \text { 4") } \end{gathered}$	$\begin{gathered} 1.7 \mathrm{~kg} \\ (3.8 \mathrm{lb}) \end{gathered}$
5 decades		$2.0 \mathrm{~kg}(4.3 \mathrm{lb})$
6 decades	$\begin{gathered} 43.9 \mathrm{~cm} \mathrm{~W} \times 8.9 \mathrm{~cm} \mathrm{H} \times 10.2 \mathrm{~cm} \mathrm{D} \\ \left(17.3^{\prime \prime} \times 3.5^{\prime \prime} \times 4\right. \text { 4") } \end{gathered}$	2.2 kg (4.8 lb)
7 decades		$2.4 \mathrm{~kg}(5.3 \mathrm{lb})$
8 decades	$\begin{gathered} 48.3 \mathrm{~cm} \text { W } \times 17.8 \mathrm{~cm} \mathrm{H} \times 19.7 \mathrm{~cm} \mathrm{D} \\ \left(19.0^{\prime \prime} \times 7.0^{\prime \prime} \times 7.8^{\prime \prime}\right) \end{gathered}$	$2.6 \mathrm{~kg}(5.7 \mathrm{lb})$
9 decades		$\begin{gathered} 5.1 \mathrm{~kg} \\ (11.2 \mathrm{lb}) \end{gathered}$
10 decades		5.3 kg (11.7 lb)
11 decades		5.4 kg (11.9 lb)

ORDERING INFORMATION

Catalog No	Total (Ω)	Min step	No of dials
1433-01	1.110	0.001	3
1433-00	111.10	0.01	4
1433-02	1,111.0	0.1	4
1433-04	11,110	1	4
1433-06	111,100	10	4
1433-08	1,111,000	100	4
1433-09	11,110,000	1000	4
1433-09A	111,100,000	10,000	4
1433-10	1,111.10	0.01	5
1433-10A	111.110	0.001	5
1433-12	11,111.0	0.1	5
1433-14	111,110	1	5
1433-16	1,111,100	10	5
1433-18	11,111,000	100	5
1433-18A	111,110,000	1000	5
1433-19	1,111.110	0.001	6
1433-20	11,111.10	0.01	6
1433-22	111,111.0	0.1	6
1433-24	1,111,110	1	6
1433-26	11,111,100	10	6
1433-27	111,111,000	100	6
1433-28	11,111.110	0.001	7
1433-29	111,111.10	0.01	7
1433-31	1,111,111	0.1	7
1433-33	11,111,110	1	7
1433-34	111,111,100	10	7
1433-35	111,111.110	0.001	8
1433-36	1,111,111.10	. 01	8
1433-37	11,111,111.0	0.1	8
1433-38	111,111,110	1	8
1433-39	1,111,111.110	0.001	9
1433-39A	11,111,111.10	0.01	9
1433-39B	111,111,111.0	0.1	9
1433-40A	11,111,111.110	0.001	10
1433-40	111,111,111.10	0.01	10

INCLUDES:

- Calibration Certificate Traceable to SI

OPTIONAL ACCESSORIES:

- Calibration Data

$1433-50$	Rack Mount Kit (4 dial)
$1433-51$	Rack Mount Kit (5 dial)
$1433-52$	Rack Mount Kit (6 dial)
$1433-53$	Rack Mount Kit (7 dial)

Contents
p. 2
:---:
pp. 4-8
:---:
pp. 9-11
:---:
pp. 12-87
:---:
products
pp. $50-87$
:---:
p. 89

1565-B Series

The 1565-B a general purpose sound-levelmeter, ide alfor me asurements required by OS $\mathcal{H A}$ and for general noise surveys. This popular meter weights less than 1 pound, features simple pusfibutton operation, battery power, and a rigged ceramic microphone. The 1565-B may be purchased alone, with an acoustic calibrator, windscreen, and with a choise of carrying/storage cases.

- 40 to 140 dB
- ANSI Type 2

Model 1565-B Sound-Level Meter

- A, B, C weighting
- Fast/slow meter response • MESA approved

SPECIFICATIONS

Sound Level: 40 to 140 dB re $20 \mu \mathrm{~N} / \mathrm{m}^{2}$
Weighting: A, B, and C. Conforms to ANSI S1, 4-1971 Type 2 and IEC651.
Meter: rms response with fast and slow speeds.
Input: MICROPHONE: Lead-ziconate-titanate ceramic.
Output: > 1.2 Vrms behind 620Ω with meter at full scale; will drive oscilloscope or low-impedance headphones. HARMONIC DISTORTION: < 0.5\% (0.1\% typical) from 32 Hz to 8 kHz , C-weighted with meter at full scale. Any load impedance may be connected.

Calibration: Can be pressure calibrated at $125,250,500,1000$, and 2000 Hz with GR 1562 Calibrator, and at 1000 Hz with GR 1987*.

Environmental: TEMPERATURE: -10 to $50^{\circ} \mathrm{C}$ operating: -40 to $+60^{\circ} \mathrm{C}$ storage, with batteries removed; coefficient of sensitivity ~ $+0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ at 6 dB below full-scale meter reading. HUMIDITY: $0-$ 90% RH within 0.5 dB . MAGNETIC FIELD: 1 oersted ($80 \mathrm{~A} / \mathrm{m}$) 50- or 60- Hz field causes about 45 dB C-weighted (negligible A-weighted) indiction when meter is oriented for maximum sensitivity to field. A

1-oersted, $400-\mathrm{Hz}$ field causes about 58 db A-wwighted indication when meter is oriented for maximum sensitivity. VIBRATION: With the microphone attached, the highest meter indications (without interference from background noise) when the instrument is vibrated at an acceleration of 0.1 g , are 67 dBA at $63 \mathrm{~Hz}, 68 \mathrm{dBA}$ at 250 Hz , and 70 dBA at 1000 Hz . When the microphone is replaced by an equivalent impedance, the same test gives no meter indication.

Supplied: Microphone safety cap, instruction manual, carrying case.
Power: Two 9V alkaline batteries (NEDA 1604AC) supplied, provide 50 hours of operation.

Mechanical: Shielded plastic case
Dimensions: $16.5 \mathrm{~cm} \mathrm{H} \times 0.92 \mathrm{~cm} \mathrm{~W} \times 0.53 \mathrm{~cm} \mathrm{D}\left(6.5^{\prime \prime} \times 3.63^{\prime \prime}\right.$ x 2.09").

Weight: $0.48 \mathrm{~kg}(13 \mathrm{oz})$ net, $1.4 \mathrm{~kg}(3 \mathrm{lb})$ shipping.

* At $125,250,500,1000,2000$, and 4000 Hz with GR 1986 Calibrator.

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	Index p. 89

1562-A Series

- Workhorse of the acoustics field
- Calibrates most sound-level meters
- Generates standard level and frequencies
- Adaptable to various microphone sizes
- Use in the lab or in the field
- Supplied with instruction Manual and batteries
- Adaptors and cases available

Model 1562-A Sound-Level Calibrator

SPECIFICATIONS

Acoustical Output:
Frequencies: 125, 250, 500, 1000 and 200 Hz
Frequencies Accuracy: $\pm 3 \%$
Output Level: 114 dB re $20 \times 10^{-6} \mu \mathrm{~N} / \mathrm{m}^{2}$
Level Accuracy: at $23^{\circ} \mathrm{C}$ and 790 mm Hg : $\pm 0.3 \mathrm{~dB} @ 500 \mathrm{~Hz}$; $\pm 0.5 \mathrm{~dB}$ @ other frequences.

Adaptors: Fits GenRad 1 1/8" mics directly; other mics require adaptors (available in limited quantities).
Output Voltage: $1.0 \mathrm{~V} \pm 20 \%$ behind 6000Ω.

Frequency Characteristic: Output is flat $\pm 2 \%$.
Distortion: < 0.5\%.
Connector: Jack to accept standard 1/4" phone plug.
Power Requirements: standard 9 V alkaline battery (NEDA 1604 AC).

Dimensions: $12.4 \mathrm{~cm} \mathrm{H} \times 5.7 \mathrm{~cm} \mathrm{~W} \quad\left(4.9^{\prime \prime} \times 2.2^{\prime \prime}\right)$.
Weight: $0.45 \mathrm{~kg}(1 \mathrm{lb})$.
Operating Environment: 0 to $40^{\circ} \mathrm{C}, 0$ to 95% relative humidity.
Storage Temperature: -40 to $+60^{\circ} \mathrm{C}$ with battery removed.

1531-AB and 1538-A Strobotac ${ }^{\circ}$ Series

Strobotac provides two figh quality models to chose from to fulfill your electronic strobo. scopic needs. The 1531-AB for most applica. tions and the 1538-A for situations requiring very figh flasf rates. Both instruments offer proven reliability.

Model 1531-AB and

- For machine maintenance

1538-A Strobes

- Real time inspection of moving parts
- Printing press applications
- Motor troubleshooting
- For stopping motion
- MODEL 1531-AB:
- Flash rates up to 25,000 fpm with accuracy of $+1.0 \%$
- Unique, rugged carrying case for portability
- Flash duration ranging from $0.8 \mu \mathrm{~s}$ to $3.0 \mu \mathrm{~s}$ for clear, crisp images

MODEL 1538-A:

- High speed, adjustable flash rates up to 150,000
fpm provide direct reading in four ranges with $\pm 1.0 \%$ accuracy
- Flash duration from 0.5μ s to 3.0μ s for clear, crisp images
- Unique, rugged carrying case for portability
- Can be battery operated

Compact and accurate. These strobes are small portable flash-ing-light sources used to measure the speed of fast-moving devices or to produce the optical effect of stopping or slowing high-speed motion for observation. A build-in system uses the power-line frequency for quick and easy checks and adjustment of the flashrate calibration. Each flash lamp/reflector assembly is hinged at the panel and the reflector swivels 360 degrees, for complete flexibility. The cases have standard sockets (0.25×20 threads/inch) for tripod mounting.

Versatile synchronization: A variety of trigger inputs can be used for flash synchronization. Contact closures, pulses, or sinewave signals will trigger the flash, and an output trigger is provided so the stroboscope, in turn, can trigger another device. Single-flash photographs of high-speed motion are a snap with any still camera.

The difference: The 1531 is more economical to buy. On the other hand, the 1538 gives you six times the maximum flash rate of the former, and enable portable operation with a rechargeable battery. The 1538-A can also be used with an optical extension lamp.

* 1538-P2 Extension Lamp;
accessory for the 1538-A

1531-AB and 1538-A Strobotac ${ }^{\circ}$ Series

p. 2 of 2

SPECIFICATIONS

SERIES 1531-AB:
Flash Rate:

Accuracy:

110 to 25,000fpm in 3 ranges; speeds up to $250,000 \mathrm{rpm}$ can be measured.
$\pm 1 \%$ of reading after calibration on one range against $50-\mathrm{to}-60 \mathrm{~Hz}$ line frequency.
External Trigger: Input and output connections are phone jacks.
Input: Contact opening, pulse $\geq+6 \mathrm{~V}$ pk-pk, or sinewave $\geq 2 \mathrm{~V}$ rms for $f>5 \mathrm{~Hz}$.
Output: Negative pulse ≥ 500 to 1000 V .
Light Output: Beam width 10° degrees at $1 / 2$-intensity
points.

SERIES 1538-A:
Flash Rate:

Accuracy:

External Trigger: Input and output connections are phone jacks.
Input: Contact closure, pulse $\geq+1 \mathrm{~V}$ pk-pk, or sinewave $\geq 0.35 \mathrm{~V}$ rms for $\mathrm{f}>5 \mathrm{~Hz}$ (3.5V at 10 Hz)
Output: $\geq+6 \mathrm{~V}$ behind 400Ω.
Beam width 10° at $1 / 2$-intensity points.

Flashes per minute	Duration* $(\mu \mathrm{s})$	Energy** (watt-seconds)	Beam intensity*** (candela)
at 690	3	0.5	11×10^{6}
at 4170	12	0.09	3.5×10^{6}
at 25,000	0.8	0.014	0.6×10^{6}

Flashes per minute	Duration* $(\mu \mathrm{s})$	Energy** (watt-seconds)	Beam intensity*** (candela)
at 690	3	0.5	15×10^{6}
at 4170	1.2	0.09	5×10^{6}
at 25,000	0.8	0.014	1×10^{6}
at 150,000	0.5	0.0023	0.16×10^{6}

* Measured at $1 / 3$ peak intensity.
** Electrical input to lamp.
*** Measured with silicon photo detector 1 meter from lamp; single-flash beam intensity is 18×10^{6} candela
* Measured at $1 / 3$ peak intensity.
** Electrical input to lamp.
*** Measured with silicon photo detector 1 meter from lamp; singleflash beam intensity with - P 4 is 44×10^{6} candela

Features

Power:	100 to 125 V , or 200 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 25 \mathrm{~W}$	Dimensions:	$16.8 \mathrm{~cm} \mathrm{H} \times 27.0 \mathrm{~cm} \mathrm{~W} \times 15.6 \mathrm{~cm} \mathrm{D}$
	max for $1531,15 \mathrm{~W}$ max for $1538 ; 1538 \mathrm{can}$ also be		$\left(6.63^{\prime \prime} \times 10.63^{\prime \prime} \times 13^{\prime \prime}\right)$
	powered from 20 to $30 \mathrm{~V} \mathrm{DC}$,12 W max.	Weight:	$3.5 \mathrm{~kg}(7.5 \mathrm{lb}$.$) net, 4.6 \mathrm{~kg}(10 \mathrm{lb}$.$) shipping$

ORDERING INFORMATION

Catalog Number	Item	Voltage Model (V)
$1531-9430$	$1531-A B$	115
$1531-9440$	$1531-A B$	230
$1538-9701$	$1538-A$	115
$1538-9702$	$1538-A$	230

INCLUDES:
Calibration Certificate Traceable to NIST Adjustable Neck Strap
Phone plug for input and output jacks Power Cord

OPTIONS
Calibration Data
1538-9601 1538-P1 Replacement Strobotron Flash Lamp, for 1531/1538

Accessories for 1538-A only:
1538-9602 1538-P2 Extension Lamp
1538-96031538-P3 Battery and Charger
1538-9604High Intensity -Flash Capacitor; increases output

1539-A Strobotac ${ }^{\circ}$ Series

The 1539-A is a cost effective solution when external triggering only is required or when figh intensity light is necessary by using multiple units.

- For machine maintenance
- Real time inspection of moving parts
- Printing press applications
- Motor troubleshooting
- For stopping motion
- Externally triggered flash rate up to 25,000 frm
- Detachable lamp for easy observation of objects in hard-to-reach areas
- Versatile delayed triggering from 100μ to 800 ms with Strobotac Flash Delay accessory

Slaved light-the 1539-A.

The Stroboslave stroboscope light source satisfies the basic requirements for motion studies and high-speed photography-it produces a bright white light at flash rates up to 25,000 per minute. Since it contains no internal oscillator to establish the flash rate, it is an economical unit and is well suited for use with external inputs.

A tripod socket is provided on the Stroboslave case.

Model 1539-A StroboSlave

- Low cost, compact
- High-intensity light

The lamp and reflector assembly is held in place by a clip from which it can be easily removed and positioned separately from the main unit. A five-foot flexible cable is supplied and cables up to 50 feet can be used. When the reflector is removed from the assembly, the lamp can be inserted through holes as small as one inch in diameter, thus making it possible to observe objects in otherwise inaccessible areas.

> The lamp can be removed from its clamp at end of case and hand-held up to 5 feet away.

Series 1539-A Stroboscopic Light Source

SPECIFICATIONS

Flash Rate: 0 to 25,000 flashes per minute, externally triggered only Light Output: Beam width 10° at $1 / 2$ - intensity points.

Flashes per minute	Duration* $(\mu \mathrm{s})$	Energy** (watt-seconds)	Beam intensity*** (candela)
at 700	3	0.5	11×10^{6}
at 4200	12	0.09	3.5×10^{6}
at 25,000	0.8	0.014	0.6×10^{6}

* Measured at $1 / 3$ peak intensity; for 1538 with -P4 duration is $8 \mu \mathrm{~s}$.
** Electrical input to lamp, watt-seconds.
*** Measured with silicon photo detector 1 meter from lamp; single-flash beam intensity is 18×10^{6} candela.

Features

External Trigger:

Power:

Mechanical:

Contact closure or pulse of $\pm 2 \mathrm{~V}$ pk applied to phone jack.

100 to 125 V , or 195 to $250 \mathrm{~V}, 50$ to 400 Hz , 16 W max.
Metal case with detachable lamp housing.

Dimensions: $\quad 21.3 \mathrm{~cm} \mathrm{H} \times 6.4 \mathrm{~cm} \mathrm{~W} \times 10.5 \mathrm{~cm}$ D ($8.38^{\prime \prime} \times 2.5^{\prime \prime} \times 4.13^{\prime \prime}$)

Weight:
1.4 kg (3 lb.) net, $3.7 \mathrm{~kg}(8 \mathrm{lb}$.$) shipping$

ORDERING INFORMATION

1539-9701 1539-A Strobotac Light Source

INCLUDES:

Calibration Certificate Traceable to NIST
Mounting Bracket
Phone plug for input and output jacks
Attached Power Cord

OPTIONAL ACCESSORIES:

Calibration Data

1538-9601 1538-P1 Replacement Strobotron Flash Lamp

1542-B Strobotac ${ }^{\circledR}$ Stroboscope Series

The 1542-B is an extremely easy to use and low cost solution for Strobe-Inspection operations. It is ide al for timing and observing motion in a variety of situations.

- For machine maintenance
- Real time inspection of moving parts
- Printing press applications
- Motor troubleshooting
- For stopping motion
- Up to 3800 bright-white flashes per minute -to
observe motion as fast as 40,000 rpm
- Wide-range continuous flash-rate control
- Low-cost, excellent OEM strobe

The Strobotac 1542-B has been tailored for convenient operation. This strobe was designed specifically for inspection applications and features simple pushbutton control with a single knob to control the flash rate - no range switching is ever necessary. This strobe includes a unique electronically compensated output fro visually constant image brightness (as the flash rate decreases, the light intensity hand-held operation and includes a threaded hole for tripod mounting.

All components are industrial grade and the engineering is completely thorough, including exacting environmental testing to ensure reliable operation under extreme conditions.

Model 1542-B Stroboscope

- Simple push-button operation
- Compact, light-weight, rugged

The $1542-\mathrm{B}$ - simple, economical. The $1542-\mathrm{B}$ is as easy to operate as an extension lamp but is considerably more useful. Plug in the attached power cord, push the On-Off button, point the light at the action, and turn one knob until the visual image of the action slows to the desired rate or stops. That's the sum total of the operation - plug, push, point, and turn!

The arm is available as an accessory to position the light conveniently in permanent or semi-permanent installations.

> Convenient hand held or optional fixed position operation.

Series 1542-B Electronic Stroboscope

SPECIFICATIONS

Flash Rate:	180 to 3,800 flashes per minute, adjustable over a single range by a 5-turn uncalibrated control.
External Trigger:	None.

Trigger Delay. None.
Light Output: Beam width 10° at $1 / 2$ - intensity points.

Flashes per minute	Duration* $(\mu \mathrm{s})$	Energy** (watt-seconds)	Beam intensity*** (candela)
at 180	4	0.25	6×10^{6}
at 3800	3	0.06	1×10^{6}

* Measured at $1 / 3$ peak intensity; for 1538 with -P4 duration is $8 \mu \mathrm{~s}$.
** Electrical input to lamp, watt-seconds.
*** Measured with silicon photo detector 1 meter from lamp.

ORDERING INFORMATION

1542-9701 1542-B Strobotac Electronic Stroboscope

INCLUDES:
Calibration Certificate Traceable to NIST
Attached Power Cord

OPTIONAL ACCESSORIES:
Calibration Data
1530-9410 Replacement Flash Lamp for 1542-B
1542-9600 Arm, for 1542-B, to position light conveniently in permanent or semi-permanent installations

Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	$\begin{aligned} & \text { Index } \\ & \text { p. } 89 \end{aligned}$

1546 Strobotac ${ }^{\ominus}$ Series

The 1546 Strobotac $\operatorname{Digital}$ Stroboscope features a large, five-digit LED readout that automatically displays the flastrate in bold, easy-to-read digits. This display eliminates the need to calibrate and read a dial to obtain ac. curate speed measurements.

- For machine maintenance

- Real time inspection of moving parts
- Printing press applications
- Motor troubleshooting
- For stopping motion
- Quartz crystal accuracy of $\pm 0.01 \%$ for speed,

Encased in a ragged, high-impact housing, the 1546 is designed for maximum portability. Its light-weight design (just 2.65 pounds) promotes had-held operation and permit access to hard-to-light areas under inspection. The strobe also may be operated from any flat surface or mounted on a tripod.
The 1546 emits a high intensity, short duration flash of light for crisp, clear images of fast moving objects. It has a broad flash frequency range from 100 to 25,000 flashes per minute.

The 1546 is capable of both internally and externally triggered modes of operation. In the internal mode, the flash is triggered by an internal oscillator pulse that can also drive other Strobotac stroboscopes for additional light sources. In the external mode, the 1546 operates as a digital tachometer when a voltage pulse or

Model 1546-B Digital Stroboscope

turns, or rpm measurements

- Large five-digit LED readout for instant, accurate readings
- Flash rates ranging from 100 to 25,000 fpm in three ranges
- Input connector for external triggering
contact closure is activated by the rotation of an object.
The unit is particularly suited to speed measurements because of the instant digital readout. In machinery design and maintenance applications, the 1546 will help determine the speed of rotating components, slippage between shafts, condition of belts and gears, alignment of couplings, and effect of chassis vibration, all at operating speed. It is very useful for quality control inspection and set-up of process machinery such as bottling, canning, packaging, and stamping operations. Other ideal applications are textile machinery adjustments, printing press registration, electrical equipment design and servicing, photography of high speed events, and physics lab demonstrations.

SPECIFICATIONS

Flash Rate:

100 to 25,000	Range	frm
flashes per minute (frm) in three over- lapping ranges	1 Low	$100-700$
	2 Med	$600-4,200$
	3 High	$3,600-25,000$

Flash Duration:

approximate	Range	μs
	1 Low	2
	2 Med	2
	3 High	1.2

Accuracy: $\pm 0.01 \%$, crystal-controlled time base. Display accuracy limited by resolution of display below $10,000 \mathrm{frm}$ to $\pm 1 \mathrm{frm}$.

Tachometer Function: LED display reads for both internal and external modes.
External Trigger: Three-terminal phone jack, $>+1.0 \mathrm{~V}$ pulse, >0.75 rms sine wave, or contact closure.
Trigger Output: $>2.5 \mathrm{~V}$ behind $1 \mathrm{k} \Omega$.

Contents
p. 2
:---
pp. 4-8
:---:
pp. 9-11
:---
pp. 12-87
:---:
products
pp. 50-87
:---
p. 89

Series 1546 Digital Stroboscope

Features

Environment:
Temperature: $\quad 0$ to $50^{\circ} \mathrm{C}$ operating, $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ storage. Humidity: 95% RH at $+40^{\circ} \mathrm{C}$ (MIL E-16400-44.5.4.6).
Vibration: 0.03 in DA from 10 to 55 Hz .
Bench Handling: $\quad 4$ in or $45^{\circ} \mathrm{C}(\mathrm{MIL}-810 \mathrm{~A}-\mathrm{VI})$.
Shock: $\quad 30 \mathrm{~g}, 11 \mathrm{~ms}$.
Power: 105 to $125 \mathrm{~V}, 50$ to $60 \mathrm{~Hz}, 20 \mathrm{~W}$.

Mechanical: Molded plastic case with plastic face plate to protect
lamp, diffused-finish and anodized-aluminum reflector, standard 0.25-
20 threaded hole for tripod mounting or handle grip.
Dimensions: $10.952 \mathrm{~cm} \mathrm{H} \times 10.795 \mathrm{~cm} \mathrm{~W} \times 23.495 \mathrm{~cm}$ D (4.312" x 4.25" x 9.25")

Weight: $\quad 1.2 \mathrm{~kg}(2.65 \mathrm{lb}$.$) net, 1.55 \mathrm{~kg}$ (3.4 lb.$)$ shipping

ORDERING INFORMATION

1546-9700 1546 Strobotac Digital Electronic Stroboscope

INCLUDES:
Calibration Certificate Traceable to NIST
Phone plug for input and output jacks Attached Power Cord

OPTIONAL ACCESSORIES
Calibration Data
1538-9610 Replacement flash lamp for 1546

Conents					
conem	${ }_{\text {apen }}^{\text {apmie }}$	9.11	${ }_{\text {pp }}$ P1287	(patect	${ }_{\text {p. } 89}$

1620-A High Precision Capacitance Measurements

The 1620-A is a self-contained assembly of the 1615-A Capacitance Bridge with appropriate os. cillator and null detector for measurements at 11 frequencies between $50 \mathcal{H z}$ and 10 kHz . For applications requiring other or higher frequencies, to 100 kHz , the 1615-A Bridge can be supplied separately and the oscillator and detector selected to meet your needs.

- Accurate and precision measurements of capaci-
tance and dissipation factor
- Measurement of circuit capacitances
- Dielectric measurements
- Intercomparison of capacitance standards differing
in magnitude by as much as 1000:1
- $10^{-5} \mathrm{pF}$ to $11.1 \mu \mathrm{~F}, 2$ - or 3- terminal
- 0.01\% accuracy, 1 ppm resolution
- Lever balance, in-line readout
- Reads dissipation factor or conductance

The 1615-A Capacitance Bridge brings to the measurement of capacitance, the intercomparison of standard, and to the measurement of dielectric properties an unusual degree of accuracy, precision, range, and convenience.
High accuracy is achieved through the use of precisely wound transformer ratio arms and highly stable standards fabricated from Invar and hermetically sealed in dry nitrogen. For calibration these standards can be intercompared.
Two- or Three- Terminal Connection - Accurate threeterminal measurements can be made even in the presence of capacitances to ground as large as $1 \mu \mathrm{~F}$, as might be encountered with the unknown connected by means of long cables. The bridge has the necessary internal shielding to permit one terminal of the unknown capacitor to be directly grounded, so that true two-terminal and three-terminal measurements can both be made over the whole capacitance range.

1620 PRECISION CAPACITANCE MEASUREMENT SYSTEM
Performance: See 1615-A for performance specifications.
Supplied:
1615-A Precision Capacitance Bridge. 1311-A Oscillator.

Model 1620-A Measurement System

Convenient Operation - For both capacitance and dissipation factor, the balance controls are smoothly operating, lever-type switches, The readout is digital and decimal point is automatically positioned. Each capacitance decade has a-1 position to facilitate rapid balancing.
The 1615-A elementary diagram is also clearly delineated on the front panel of the bridge. Changes in connections and grounds are automatically indicated, as you switch the bridge terminals for different measurement conditions.
Extend Range to 11.1 F - With the 1615-P1 RangeExtension Capacitor, the 1615-A will measure to a maximum of 11.11110 F. This capacitor plugs into front-panel bridge terminals and can be adjusted for calibration to the bridge standards.

[^2]

1620-A Precision Capacitance Measurement System

Features

105 to 125 V and 210 to $250 \mathrm{~V}, 50$ to 400
$\mathrm{Hz}, 22 \mathrm{~W}$ for oscillator.

Dimensions:
Bench: 48.3 cm H x 50.2 cm W x 28.0 cm D (19" x 19.75" x 11")
Weight: $\quad 27 \mathrm{~kg}(59 \mathrm{lb}$.$) net, 44 \mathrm{~kg}(96 \mathrm{lb}$.$) shipping$

ORDERING INFORMATION

$1620-\mathrm{A}, 115 \mathrm{~V}$	$1620-9701$
$1620-\mathrm{A}, 230 \mathrm{~V}$	$1620-9702$

$1620-A P$, with $1232-P 2,115 \mathrm{~V}$	$1620-9829$
$1620-A P$, with $1232-\mathrm{P} 2,230 \mathrm{~V}$	$1620-9830$

1615-A CAPACITANCE BRIDGE

The $1615-\mathrm{A}$ is an accurate, high-precision bridge for the measurement and intercomparison of standard capacitors, circuit component capacitors, or dielectric materials. It is available with oscillator and detector in the 1620-A system. Or, to take
full advantage of its wide frequency range, the bridge can be ordered separately for use with oscillator and detector especially selected for your purposes.

SPECIFICATIONS

Capacitance Measurement

Range: $\quad 10 \mathrm{aF}$ to $1.11110 \mu \mathrm{~F}\left(10^{-17}\right.$ to $\left.10^{-6} \mathrm{~F}\right)$ in 6 ranges, direct reading, 6-figure resolution; least count $10^{-17} \mathrm{~F}(10 \mathrm{aF})$. With Range Extension Capacitor, upper limit is $11.11110 \mu \mathrm{~F}$.

Accuracy: At 1 kHz, $\pm(0.01 \%+0.00003 \mathrm{pF})$. At higher fre quencies and with high capacitance, additional error is: $\left[\pm 3 \times 10^{-5} \%+2\left(\mathrm{C}_{\mu \mathrm{F}}\right) \times 10^{-3} \% \pm 3 \times 10^{-7} \mathrm{pF}\right\} \times\left(f_{\mathrm{kHz}}\right)^{2}$
At lower frequencies and with low capacitance,
accuracy may be limited by bridge sensitivity.
Comparison accuracy, external standard to unknown,1 ppm.
Dissipation Factor:
Range: At 1 kHz, 0.000001 to 1; 4-figure resolution, least significant digit count: $0.000001\left(10^{-6}\right)$; range varies directly with frequency.

Accuracy:
$\pm\left[0.1 \%\right.$ of measured value $\left.+10^{-5}\left(1+f_{\mathrm{kHz}}+5 f_{\mathrm{kHz}} C_{\mu \mathrm{F}}\right)\right]$.

Conductance:
Range: $\quad 10^{-6} \mu \mathrm{~S}$ to $100 \mu \mathrm{~S}$, ranges +, 2 ranges-, 4 figure resolution, least count $10^{-6} \mu \mathrm{~S}$, independent of frequency, range varies with C range.
Accuracy: $\pm\left[1 \%\right.$ measured value $+10^{-5} \mu \mathrm{~S}+6 \times 10^{2} f_{\mathrm{kHz}} \mathrm{C}_{\mu \mathrm{F}}$ $\left.\mathrm{x}\left(1+f_{\mathrm{kHz}}+5 f_{\mathrm{kHz}} \mathrm{C}_{\mu \mathrm{F}}\right) \mu \mathrm{S}\right]$.

Frequency: Approximately 50 Hz to 10 kHz . Useful with reduced accuracy to 100 kHz . Below 100 Hz , resolution better than 0.01% or 0.01 pF required preamplifier or special detector.

Standards: $1000,100,10,1,0.1,0.01,0.001$ and 0.0001 pF. Temperature coefficient of capacitance is less than $5 \mathrm{ppm} / \mathrm{C}$ for the 1000,100 , and 10 pF standards, slightly greater for the smaller units.

Generator: Maximum safe generator voltage ($30 \times f_{\mathrm{kHz}}$) volts, 300 V max. If generator and detector connections are interchanged, 150 to 500 V can be applied, depending on switch settings.

ET 1311-A Audio Oscillator is recommended.

1232-A Tuned Ampifier And Null Detector

A sensitive null detector like this is the key to many a fussy bridge measurement. Battery operation frees the 1232 from power-line noise and makes it ultra portable. Low-noise solid state circuitry and figh gain make it very sensitive. Its tunability and choice of bandwidth enable your to reject broadband noise as well as the farmonics that might otherwise impair good measurements.

- Bridge detector at audio frequencies; with 1232-P2 Preamplifier it is equally sensitive for extremely highimpedance sources
- Audio preamplifier and general-purpose, tunable or broadband audio amplifier
- Sensitive audio wave analyzer for approximate measurements
- 20 Hz to 20 kHz , 50 and 100 kHz
- $0.1 \mu \mathrm{~S}$ sensitivity
- Bandwidth approximately 5\%
- 120 dB gain

SPECIFICATIONS

Frequency:
Tunable filters: 20 Hz to 20 kHz in 3 ranges, between 2% and 6% bandwidth to 15 kHz . Second harmonic at least 34 dB down from peak, third harmonic at least 40 dB down, rejection filter on two highest ranges reduces 60 Hz level to at least 60 dB below peak response (50 Hz level is down $>50 \mathrm{~dB}$). Dial accuracy is $\pm 3 \%$.
Fixed-Tunable Filters: $50 \mathrm{kHz}, 2-\mathrm{nd}$ harmonic is 44 dB down; 100 kHz , 2-nd harmonic is 53 dB down.
Flat Response: $\pm 3 \mathrm{~dB}$ from 20 Hz to 100 kHz .
Sensitivity: See fig. 1. Typically better than 0.1μ S over most of the frequency range.

Noise Level: \quad Referred to input: See fig. 2. Noise at $1 \mathrm{kHz}<2$ dB at optimum source impedance of $27 \mathrm{k} \Omega$. Referred to output: $<5 \mathrm{mV}$ on FLAT filter-frequency position, main gain setting, and 20 dB switch position. $<50 \mathrm{mV}$ in MAX SENS position.

Signal Input:
Impedance: \quad Approximately $50 \mathrm{k} \Omega$ at max gain; varies inversely with gain to $1 \mathrm{M} \Omega$ at min gain.

Max Safe Voltage: 200 Vac or 400 Vdc.
Output:
Voltage Gain: Approximately 120 dB on the tunable ranges;
100 dB , flat range; 106 dB at $50 \mathrm{kHz} ; 100 \mathrm{~dB}$ at 100 kHz position.
Level: 1 V into $10 \mathrm{k} \Omega$ when meter indication is full scale. Internal Impedance: $3 \mathrm{k} \Omega$.
Meter Linearity: dB differences are accurate to $\pm 5 \% \pm 0.1 \%$ division for inputs of less than 0.3 V .

Compression: (meter switched to LOG) Reduces full-scale sensitivity by 40 dB . Does not affect bottom 20% of scale.
Attenuation: (meter switched to -20 dB). Linear response with 20 dB less gain than MAX SENS.
Distortion: (filter switched in FLAT position): <5 \% (due to meter rectifiers).
Terminals:
Input: 874 Coaxial Connector.
Output: binding posts.
Available: 1232-P2 Preamplifier to maintain sensitivity of 1232-A at low frequencies when operating from a source impedance above $100 \mathrm{k} \Omega$.

Features

Power: $\quad 12 \mathrm{Vdc}$, from 9 mercury (Eveready type E4 or equivalent) cells in series. Estimated battery life 1500 hours.

Mechanical: Convertable-bench cabinet.
ORDERING INFORMATION
1232-A
1232-9701 Tuned Amplifier and Null Detector
1232-AP 1232-9829Tuned Amplifier and Null Detector with preamplifier

Dimensions:	$\begin{aligned} & 15.2 \mathrm{~cm} \mathrm{H} \times 20.3 \mathrm{~cm} \mathrm{~W} \times 19.0 \mathrm{~cm} \mathrm{D} \\ & \text { (6" } \left.\times 8 \text { " } \times 7.5^{\prime}\right) \text {. } \end{aligned}$
Weight:	$2.6 \mathrm{~kg}(5.75 \mathrm{lb})$ net, 3.7 kg (8 lb) shipping

Weight: $\quad 2.6 \mathrm{~kg}(5.75 \mathrm{lb})$ net, $3.7 \mathrm{~kg}(8 \mathrm{lb})$ shipping.
\(\left.$$
\begin{array}{cc}\begin{array}{c}\text { Contents } \\
\text { p. } 2\end{array} & \begin{array}{c}\text { Applic. } \\
\text { pp. 4-8 }\end{array} \\
& \text { 1232-P2 Preaction } \\
\text { pp. 9-11 }\end{array}
$$ $$
\begin{array}{c}\text { Products } \\
\text { pp. 12-87 }\end{array}
$$ \begin{array}{c}GenRad

products

pp. 50-87\end{array}\right]\)| Index |
| :---: |
| p. 89 |\quad Precision Capacitance

The 1232-P2 fias particular application to me asurements with the 1615-A Capacitance $\mathcal{B r i d g e}$. It increases sensitivity for measure. ments made at frequencies well below 1000 $\mathcal{H} z$ if the bridge is set to both its lowest C
and \mathcal{D} (not G) ranges simultane ously. Lowfrequency measurement of small samples of dielectric materials can be made more accurately with the addition of this preamplifier. SPECIFICATIONS

Voltage Gain: Approximately 0.7.
Noise: (referred to input) Open-circuit equivalent, 0.1 pA . Short-circuit equivalent, $0.3 \mu \mathrm{~S}$ (when used with Type 1232-A tuned to 100 Hz).

Impedances:
Input: $\quad>100 \mathrm{~m} \Omega$ in parallel with 70 pF .
Optimum Source: $\quad 3 \mathrm{M} \Omega$.
Output: $\quad 10 \mathrm{k} \Omega$.
Connectors: 874 on cables, input and output.

Features

Power: $\quad 12 \mathrm{~V}, 200 \mu \mathrm{~A}$, supplied by 1232-A.
Mechanical: Cpecial cabinet.

Dimensions:	$15.2 \mathrm{~cm} \mathrm{H} \times 1.9 \mathrm{~cm} \mathrm{~W} \times 19.0 \mathrm{~cm} \mathrm{D}$
	$\left(6^{\prime \prime} \times 0.75^{\prime \prime} \times 7.5^{\prime \prime}\right)$.
Weight:	$0.43 \mathrm{~kg}(0.94 \mathrm{lb}) \mathrm{net}, 1.9 \mathrm{~kg}(4 \mathrm{lb})$ shipping.

ORDERING INFORMATION
1232-P2 1232-9602 Preamplifier

1620 PRECISION CAPACITANCE MEASUREMENT SYSTEM

SPECIFICATIONS

Detector: IET 1232-A Tuned Amplifier and Null Detector is recommended. For increased sensitivity needed to measure low-loss small capacitors (on lowest C and D ranges simultaneously) at frequencies below 1 kHz, use the 1232-AP Tuned Amplifier and Null Detector or 1238 Detector (with 1311-A Audio Oscillator).

Connections: Gen Input; Binding posts, ground terminal with shorting link. Detector, External Std, and Unknown; 874 connectors, Unknown, 2-Terminals; Binding posts.

Required: Oscillator and Detector.
Supplied: 874-WO Open-Circuit Termination, 874-R22A Patch Cord, 274-NL Patch Cord.

Available: Type 1615-P1 Range Extension Capacitor
Type 1615-P2 Coaxial Adaptor converts 2-terminal binding post connection of 1615-A bridge to G900 Precision Coaxial Connector for highly repeatable connections and enables measurements with adaptor to be reading by compensating for terminal capacitance.

Features
Dimensions: \quad Bench: $\quad 32.4 \mathrm{~cm} \mathrm{H} \times 48.3 \mathrm{~cm}$ W $\times 26.7 \mathrm{~cm} \mathrm{D}$
(12.75" x 19" x 10.5")

Rack: $31.1 \mathrm{~cm} \mathrm{H} \times 48.3 \mathrm{~cm} \mathrm{~W} \times 21.7 \mathrm{~cm} \mathrm{D}$
(12.25" x 19" x 8.5")

Weight: $\quad 18 \mathrm{~kg}(39 \mathrm{lb}$.$) net, 27 \mathrm{~kg}(58 \mathrm{lb}$.$) shipping$
ORDERING INFORMATION
1615-A

Capacitance Bridge	
Bench Model	$1615-9801$
Rack Model	$1615-9811$

ACCESSORIES

1615-P1 Range-Extension Capacitor 1615-9601
1615-P2 Coaxial Adaptor, G900 to binding posts 1615-9602

1616 Precision Capacitance Bridge

The heart of precision. The 1616 is the heart of the 1621 Capacitance. Me asuring Assembly. The bridge is also available separately for use where oscillator and detector are on fiand or in applications in which they must be specialized for a unique need.

The 1616 employs a transformer ratio-arm bridge with which unbalances as small as $0.1 \mathrm{aF}\left(10^{-7} \mathrm{pF}\right)$ and $100 \mathrm{aS}\left(10^{-10} \mu \mathrm{~S}\right)$ can be resolved. Detection of such small unbalances is aided by ratio-transformer voltage capabilities up to 160 volts at 1 kHz and by range switching that disconnects the unused internal standards in order to reduce shunt capacitance across the detector input.
For thermalstability in precision intercomparisons, eight of the twe lve internal capacitance standards are mounted in an insulated compart. ment to reduce the effects of ambient temperature changes. Misreading the values at balance is virtually impossible due to direct-reading lever switches that control the balance for both capacitance and conductance. Panel layout is unusually neat-only the unknown capacitor and , if desired, and external standard for comparis on me as urements are connected to the front panel; the oscillator and detector are connected to the rear as are the $\mathcal{B C D}$ data-output channels.

Model 1616 Precision Capacitance Bridge

- $10^{-7} \mathrm{pF}$ to $10 \mu \mathrm{~F}-12$ digital readout
- $10^{-10} \mu \mathrm{~S}$ to $1000 \mu \mathrm{~S}-5$ digital readout
- 10 Hz to 100 kHz

SPECIFICATIONS

Capacitance measurement, 3-terminal; DECADES: 12. RANGE: 0.1 aF to $1 \mu \mathrm{~F}\left(10^{-19}\right.$ to $\left.10^{-6} \mathrm{~F}\right)$. ACCURACY:* $\pm 10 \mathrm{ppm}$, when most-significant decade is 1,10 , or 100 pF per step; otherwise, and at other frequencies, accuracy is $\pm\left[50 \mathrm{ppm}+\left(0.5+20 \mathrm{C}_{\mu \mathrm{F}}\right)\left(\boldsymbol{f}_{\mathrm{kHz}} \mathrm{ppm}+\left(\boldsymbol{f}_{\mathrm{kHz}}\right) \mathrm{aF}\right]\right.$. Capacitance, 2-terminal: Same as above, except as follows. RANGE: One additional decade, to $10 \mu \mathrm{~F}\left(10^{-19}\right.$ to $\left.10^{-5} \mathrm{~F}\right)$.
Conductance measurement, 3-terminal: DECADES: 5 (virtually extended to 11 by G multiplier). RANGE; 100 aS to $100 \mu \mathrm{~S}\left(10^{-16}\right.$ to 10^{-4} S). ACCURACY:* $\pm(0.1 \%+1$ step in least significant decade). There is a small reduction in conductance accuracy at frequencies other than 1 kHz . RESIDUAL C (across conductance standards): $\pm(<0.03 \mathrm{pF})$. Conductance, 2-terminal: Same as above, except as follows: RANGE: One additional decade, to $1000 \mu \mathrm{~S}\left(10^{-16}\right.$ to $\left.10^{-3} \mathrm{~S}\right)$. Multipliers: FOR 3-TERM: X1. X10; FOR 2-TERM: X1, X10, X100; affect both C and G. FOR CONDUCTANCE ONLY: X1, X10 ${ }^{-1}, \ldots \mathrm{X} 10^{-6}$ (7 positions). Effects of these multipliers are included in the specified ranges.
Frequency: 10 Hz to 100 kHz .
Standards: CAPACITANCE; Air dielectric with TC $<+20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and D <10 ppm for 8 lowest decades; Invarf, air dielectric with TC of $+3 \pm 1$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $\mathrm{D}<10 \mathrm{ppm}$ for 3 middle decades; mica dielectric with TC of $20 \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $\mathrm{D}<200 \mathrm{ppm}$ for 2 highest decades. ADJUSTMENTS for all capacitance standards available through key-locked door on panel. THERMAL LAG: C standards for first 8 decades mounted in an insulated compartment with a thermal time constant of 6 h (time required for compartment interior to reach 63\% of ambient change). CONDUCTANCE: Metal-film resistors in T networks with small phase angles.
Comparison: Terminals provided to connect external standard for comparison measurements; 13-position panel switch multiplies standard by $-0.1,0 \ldots+1$.

Input: The smaller of $160 f_{\mathrm{kHz}}$ or 350 V rms can be applied to the bridge transformer at the GENERATOR terminal without waveform distortion; 500 V rms max, depending on conductance range, when GENERATOR and DETECTOR connections are interchanged. Interface: GR900 ${ }^{\text {® }}$ locking coaxial connector on panel to connect 2terminal unknowns, 2 gold-plated GR900 locking coaxial connectors on panel to connect 3-terminal unknowns and 2 to connect external standard. DATA OUTPUT; 50-pin and 36-pin type 57 connectors on rear provide connection to 8-4-2-1 weighted BCD contacts (rated at $28 \mathrm{~V}, 1$ A) on each switch for capacitance and conductance values respectively. OSCILLATOR and DETECTOR: Connect to rear BNC connectors. Required: OSCILLATOR: GR 1316 recommended. DETECTOR: GR 1238 recommended. The 1616 Bridge is available with this oscillator and detector as the 1621 Capacitance-Measuring Assembly. Available: 1316 OSCILLATOR, 1268 DETECTOR, a broad line of capacitance and resistance standards, and coaxial cables for connection of unknowns and standards.

* Accuracy stated as fraction of measured value, for these conditions; frequency, 1 kHz , except as noted, temperature, $23^{\circ} \pm 1^{\circ} \mathrm{C}$; humidity, <50\%RH.
t Registered trademark of the Carpenter Steel Co.
National stock numbers are listed at the back of the catalog.
Mechanical: Bench or rack model. DIMENSIONS:
Bench: 35.1 cm H x 50.2 cm W x 32.7 cm D (13.81" x 19.75" x 12.88")
Rack: $31.0 \mathrm{~cm} \mathrm{H} \times 48.3 \mathrm{~cm}$ W x 26.8 cm D ($12.22^{\prime \prime} \times 19^{\prime \prime} \times 10.56$ ").
WEIGHT: Bench, $26 \mathrm{~kg}(57 \mathrm{lb})$ net, 32 kg (69 lb) shipping; rack, 23 kg (49 lb) net, 28 kg (61 lb) shipping.
Ordering: 1616-9700
Bench Model
1616-9701 Rack Model
$\begin{array}{c}\text { Contents } \\
\text { p. } 2\end{array}$ Applic. \(\left.\left.$$
\begin{array}{c}\text { Selection } \\
\text { pp. } 4-8\end{array}
$$\right] $$
\begin{array}{c}\text { Products } \\
\text { pp. } 9-11 \\
\text { pp. 12-87 }\end{array}
$$ \begin{array}{c}GenRad

products

pp. 50-87\end{array}\right]\)| Index |
| :---: |
| p. 89 | Precision Capacitance

1621 Precision Capacitance Measurement System

The whole of precision. The 1621 represents the first major improvement in nearly a decade in ultra. precise laboratory capacitance intercomparisons and dielectric measurements. It is a completely self-contained system capable of capacitance measurements in increments as small as 0.1 aF $\left(10^{-7}\right.$ $p \mathcal{F}$) and conductance measurements in increments as small as 100 aS ($10^{-10} \mu \mathrm{~S}$; equivalent to a shunt resistance of $\left.10^{10} \mathrm{M} \Omega\right)$. Me asurements are three terminal, with 2-or 3-terminal connection, and provision is also made for the connection of an external standard for comparis on me asurements. Such capability and precision are usually accompa. nied by restricted frequency and complex operation. The 1621, however, avoids these difficulties. Little degradation of performance occurs from 10 $\mathcal{H z}$ to 10 kHz and operation to 100 kHz is possible. Balances are acfieved by in-line readout lever switches-easily adjusted and read correctly. All digits of capacitance and conductance, as well as pertinent multipliers, are also provided by $\mathcal{B C D}$.

- $10^{-7} \mathrm{pF}$ to $10 \mu \mathrm{~F}$

12-digital readout, 10-ppm basic accuracy

- $10^{-10} \mu \mathrm{~S}$ to $1000 \mu \mathrm{~S}$

5-digital readout, 0.1% basic accuracy

- 3-terminal measurements with 2- or 3- terminal connection
- comparison measurements
- simple lever balance with in-line readout
coded contact closures, available * at rear-panel connectors for use by printers or data-processing equipment.
Three integrated units. The 1621 is an assem6ly of three integrated instruments: \mathcal{A} precision ratio-arm bridge, a fighly stable oscillator, and an extremely sensitive detector. Most of the Gridge's internal standards are enclosed in an insulated housing to reduce the effects of ambient tempera. ture changes; unused standards are disconnected to reduce sfiunt capacitance at the detector input. The oscillator provides up to $125 \mathcal{V}$ or $5 \mathcal{A}$ for suf. ficient signal to be detected even with unbalances as small as one part in 10^{8} of 10 pF . The detector contains three meters to helpyou speed the balance: One displays the magnitude and the other two simultaneously display the in-phase and quadrature components of any unbalance.
* National stocknumbers are listed on the back of the catalog.

Model 1621 Precision Capacitance Measurement System

SPECIFICATIONS

Frequency: 10 Hz to 100 kHz .
Supplied: 1616 Precision Capacitance Bridge, 1316 Oscillator, 1238
Detector, all necessary interconnection cables, and power cord.
Available: 1408 REFERENCE STANDARD CAPACITORS (10 pF and 100 pF) for calibration.
Power: 100 to 125 and 200 to 250 V, 50 to $60 \mathrm{~Hz}, 51$ W.

$1621-9701$	Bench Model, 60 Hz
$1621-9702$	Rack Model, 60 Hz

[^3]Designed for the difficult. If you've ever had to extract a small signal from noise or to resolve a signal into its in-phase and quadrature components, you can appreciate the advantages of the 1238 . With its high gain-130 dB-and meters not only for magnitude of the input signal but for the in-phase and quadrature components as well, the 1238 lends itself handily to the most exacting applications.

This high-performance detector is attractive in other respects also, including $1-G \Omega$ input impedance for minimum loading, overload protection against signals up to 200 V. and flat or tuned frequency response (with or without line-frequency rejection) to tailor the detector to your signal no matter how "tainted" it might be.

Excellent bridge detector. In combination with a special oscillator, GR1316, that supplies the necessary quadrature reference channels, this detector is superb for sensitive audio-frequency detectlbn. The combination is specifically intended for use with the 1616 Precision Capacitance Br ridge, enabling resolutions of one part in 10^{6} of 10 pF . Refer to the 1621 Precision Capacitance Me asurement System.
The 1238 Detector consists of a figh-impedance low. noise preamplifier, a tuned amplifier, a compression amplifier, and two phase-sensitive detectors. Three panelmeters provide the indications: one displays the magnitude of the input signal and two others simultane. ously display its in-phase and

- 10 Hz to 100 kHz

- 100-nS full-scale sensitivity

quadrature components. The reference signals can be rotated continuously from 0 through 360° to ensure that the phase meters respond independently to the components of significance to you, for the most rapid Gridge balances or signal analys is.
The effects of noise, fum, or any other input-signal contaminants are normally reduced or eliminated from your measurements by means of a tunable filter, line. rejection filter, and selectable time constants in the phase-sensitive detector circuits - all controlled from the front panel by the simple push of a button or turn of a knob.

- magnitude, in-phase, and quadrature meters for rapid bridge balances
- excellent bridge detector

SPECIFICATIONS

Frequency: 10 Hz to 100 kHz , flat or tuned. FLAT: $\pm 5 \mathrm{~dB}$ from 10 Hz to 100 kHz . TUNED: Set by 4 in-line readout dials with $\pm 5 \%$ of reading accuracy, 2 to 4% bandwidth, and second harmonic 30 dB down from peak. LINE-REJECTION FILTER: Reduces line level by 40 dB while signal is down 6 to 10 dB at 10 Hz from line frequency; filter can be switched out.

Signal Input from bridge or other source: Applied to rear BNCconnector. SENSITIVITY: Also see curve; 100 nS rms typical for full-scale deflection at most frequencies, compression can be switched in to reduce full-scale sensitivity by 20 dB . IMPEDANCE: $1 \mathrm{G} \Omega / / 20 \mathrm{pF}$. MAXIMUM INPUT: $200 \mathrm{~V} \mathrm{rms}$. . VOLTAGE GAIN: ~105 dB in flat mode, $\sim 130 \mathrm{~dB}$ in tuned mode. set by 12-position switch. SPOT NOISE VOLTAGE: $<30 \mathrm{nS} \times \sqrt{\text { Bandwidth }}{ }_{\mathrm{Hz}}$ at 1 kHz with input impedance of $70 \mathrm{M} \Omega / / 500 \mathrm{pF}$. MONITORED by magnitude, in-phase, and quadrature meters; phase-sensitive detectors contain time-constant vairable from 0.1 to 10 s in 5 steps.

Reference Inputs from oscillator: Applied to rear BNC connectors. Two $1-\mathrm{V}$ rms reference signals required, with 90° phase difference between them. PHASE SHIFTER rotates both references continuously from 0 to 360° and two verniers rotate each reference individually $\sim 10^{\circ}$.

Outputs: MAIN AMPLIFIER: 4 V rms (approx 2.3 V for full scale
on Magnitude meter) available at rear BNC connector. MAGNITUDE: 6 V dc for full scale deflection; PHASE DETECTORS: Up to 1 V dc each for full scale deflection (depending on Sensitivity setting); available at rear 5-pin type 126 jack.

Environment: TEMPERATURE: 0 to $+55^{\circ} \mathrm{C}$ operating, -40 to $+75^{\circ} \mathrm{C}$ storage. BENCH HANDLING: 4 in. or 45° (MIL-810A-VI). SHOCK: 30 G, 11 ms (MIL-T-4807A-4.5-3A).

Required: Oscillator with 0 and 90° outputs; the 1316 Oscillator is recommended.

Power: 100 to 125 and 200 to 250 V. 50 to 60 Hz .15 W .
Mechanical: Bench or rack models.
DIMENSIONS:
Bench: 16.9 cm H x 49.7 cm W x 32.9 cm D (6.66"x19.56"x12.94") Rack, $13.3 \mathrm{~cm} \mathrm{H} \times 48.3 \mathrm{~cm}$ W x 33.2 cm D (5.22"x19"x13.06").

WEIGHT: Bench: 13 kg (27 lb) net, 19 kg (40 lb) shipping, rack 10 $\mathrm{kg}(21 \mathrm{lb})$ net, $16 \mathrm{~kg}(34 \mathrm{lb})$ shipping.
ORDERING: 1238-9700 60-Hz Bench Model 1238-9701 60-Hz Rack Model 1238-9703 50-Hz Bench Model 1238-9704 50-Hz Rack Model

I ET LA
Applic.
pp. 4-8

GenRad
products
pp. $50-87$

1316 Oscillator

Convenience and performance Set four controls and the 1316 provides any frequency from $10 \mathcal{H z}$ to 100 kHz with 1% accuracy and with little chance of an improper setting-the dials provide in-line readout, including decimal point and frequency units. Set two more controls, and the 1316 provides up to $l .6$ watts of output power (125 Vopen circuit or 5 A short circuit), Low distortion, and accurate metering.
These features alone would qualify the 1316 as an excellent general-purpose oscillator but it offers more: O utput constant within $\pm 2 \%$. excellent stability (only 0.005% drift over a 12 -hour period), and a synchroniz. ing feature that allows the oscillator to be locked to an externalstandard for evengreater accuracy and stability.

Excellent bridge oscillator The 1316 is a figh-performance bridge oscillator specifically intended for use with the 1238 Detector and the 1616 Precision Capacitance $\mathcal{B r i d g e}$. The oscillator supplies 2 references (in quadrature) for the 2-phase phase-sensitive detector,

- 10 Hz to 100 kHz
- up to 125 V or $5-\mathrm{A}$ output
- output level adjustable and metered
which enables you to make independent and ultra-pre. cise balances of the conductance (real part) and capacitance (imaginary part) of capacitive devices.
The 1316 contains a Wien-6ridge oscillator isolated from the load by a low-distortion transformer coupled power amplifier. The oscillator circuit includes a provision to introduce a synchronizing signal for phase lock. ing or to extract a signal, independent of the output setting, to operate a counter or to syncfronize an oscilloscope.

Model 1316 Oscillator

- in-phase and quadrature reference outputs
- in-line readout dials
- current-limited output - short circuits OK

SPECIFICATIONS

Frequency: 10 Hz to 100 kHz in 4 decade ranges. Controlled by one 11-position and one 10-positron switch for the most significant digits and a continuously adjustable dial with detented zero position for the third digit; in-line readout with decimal point and frequency units.
Accuracy: $\pm 1 \%$ of setting with continuously adjustable dial at zero detent position. DRIFT (typical at 1 kHz): Warmup 0.1%, short-term (10 min) 0.001%, long-term (12 h) 0.005%. RESETTAB1L1TY: Within 0.005\%.
National stock numbers are listed at the back of the catalog.
Power Output: CONTROLLED by 5-position switch and uncalibrated vernier. MONITORED by meter with $\pm 3 \%$ accuracy. AVAILABLE at rear BNC connector.

Output Range	1.5 V	5 V	15 V	50 V	150 V
Open Circuit E, rms	$\geq 1.25 \mathrm{~V}$	$\geq 4 \mathrm{~V}$	$\geq 12.5 \mathrm{~V}$	$\geq 40 \mathrm{~V}$	$\geq 125 \mathrm{~V}$
Distortion	$<0.2 \%$ from 100 Hz to 10 kHz				
Hum	0.003% of max output				
Response	output constant within $\pm 2 \%$ from 10 Hz to 100 kHz				
Short Circuit I	5 A	1.6 A	0.5 A	0.16 A	0.05 A
Distortion	$<0.2 \%$ from 100 Hz to 10 kHz				
Impedance	0.25Ω	2.5Ω	25Ω	250Ω	$2.5 \mathrm{k} \Omega$
Power	1.6 W max into matched load				

[^4]

Synchronization: INPUT: Frequency can be locked to external signal; lock range, $\pm 1 \% \mathrm{~V}$ rms input up to 10 V ; frequency controls function as phase adjustment. OUTPUT: 0.3 V rms behind $27 \mathrm{k} \Omega$; useful to sync oscilloscope or to drive a counter or another oscillator. Single rear BNC connector serves as both input and output terminal.

Power: 100 to 125 and 200 to 250 V, 50 to 60 Hz .36 W.
Mechanical: Bench or rack mount.
Dimensions:
Bench: $12.7 \mathrm{~cm} \mathrm{H} \times 50.2 \mathrm{~cm}$ W x 33.2 cm D (5 "x19.75"x13.06");
Rack: $8.8 \mathrm{~cm} \mathrm{H} \times 48.3 \mathrm{~cm} \mathrm{~W} \times 29.1 \mathrm{~cm}$ D (3.47"x19"x11.44").
Weight: Bench: $12 \mathrm{~kg}(26 \mathrm{lb})$ net, $15 \mathrm{~kg}(32 \mathrm{lb})$ shipping,
Rack: $10 \mathrm{~kg}(21 \mathrm{lb})$ net, $12 \mathrm{~kg}(27 \mathrm{lb})$ shipping.
Ordering: 1316 Oscillator
1316-9700Bench Model
1316-9701 Rach Model

Quality off-the-shelf or custom solutions

Since 1976, IET labs has had a long-standing commitment to conform the instruments and standards we offer to the customer's needs rather than to have the customer settle for what is available. We devote our customer service and applications entirely to the customer's satisfaction in the quality standards, test instruments and calibration service we provide.

- Combinations of functions; special ranges, ratings, or accuracies.
- Replacement for discontinued models from other manufacturers.
- Calibration and repair services - NIST traceable.
- Compliant with ISO-9001, ISO-10012, ANSI Z540-1-1994, and MIL-STD-45662A.
- GPIB real time process control system and applications.
- Windows hardware and software tools.
- Applications and custom engineering-readily available.
- National Stock Numbers are available for applicable models.
- All IET products are Y2K compliant.

To order or for before and after sales technical assistance:

Telephone:	(516) 334-5959 (800) 899-8438
FAX:	(516) 334-5988
Web site:	www.ietlabs.com

Payment: Purchase orders, Visa, Mastercard, AMEX, or COD.

WARRANTY
IET Labs, Inc. warrants its products to be free from defects in material and workmanship and, when properly used, will perform in accordance with applicable IET specifications. If, within one year after original shipment, a product is found not to meet this standard, it will be repaired or, at the option of IET, replaced at no charge when returned to IET. Changes in a product not approved by IET, or application of voltages or currents greater than those allowed by the specifications, will void this warranty. IET shall not be liable for any indirect, special, or consequential damages, even if notice has been given to the possibility of such damages.
this warranty is in lieu of all other warranties, expressed, or implied, including but NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

EXTENDED WARRANTIES AND SERVICE PLANS AVAILABLE

Contents
p. 2
:---:
pp. 4-8
:---:
pp. 9-11
:---:
pp. 12-87
:---:
products
pp. 50-87
:---:
p. 89

[^0]: * Replace "B" with "Q" for higher grade accuracy;
 replace "B" with "F" for 1\% accuracy.
 **See HRRS-5KV (p. 20) Series for units with $1 \mathrm{~T} \Omega$ maximum.

[^1]: * Replace "B" with "Q" for higher grade accuracy; replace "B" with "F" for 1% accuracy.

[^2]: 1232-A Tuned Amplifier and Null Detector. 1232-P2 Preamplifier added in 1620-AP.

[^3]: 1621-9703 Bench Model, 50 Hz
 1621-9704 Rack Model, 50 Hz

[^4]: * $\pm 5 \%$ for outputs $>30 \mathrm{~V} \mathrm{rms}$ at frequencies $>50 \mathrm{kHz}$.

 Reference Outputs: Quadrature output lags in-phase output by 90°. Each available at rear BNC connectors.

